IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219318195.html
   My bibliography  Save this article

An econometric evaluation of daylight saving time in Mexico

Author

Listed:
  • Flores, Daniel
  • Luna, Edgar M.

Abstract

Since the First World War, several countries use daylight saving time (DST). However, evaluations of DST started until the 1970s. Given the difficulties of finding data around the moment in which DST started, econometric studies usually evaluate changes to DST.

Suggested Citation

  • Flores, Daniel & Luna, Edgar M., 2019. "An econometric evaluation of daylight saving time in Mexico," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219318195
    DOI: 10.1016/j.energy.2019.116124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    2. Toro, Weily & Tigre, Robson & Sampaio, Breno, 2015. "Daylight Saving Time and incidence of myocardial infarction: Evidence from a regression discontinuity design," Economics Letters, Elsevier, vol. 136(C), pages 1-4.
    3. Mirza, Faisal Mehmood & Bergland, Olvar, 2011. "The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden," Energy Policy, Elsevier, vol. 39(6), pages 3558-3571, June.
    4. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    5. Tomas Havranek, Dominik Herman, and Zuzana Irsova, 2018. "Does Daylight Saving Save Electricity? A Meta-Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Hill, S.I. & Desobry, F. & Garnsey, E.W. & Chong, Y.-F., 2010. "The impact on energy consumption of daylight saving clock changes," Energy Policy, Elsevier, vol. 38(9), pages 4955-4965, September.
    7. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
    8. Kellogg, Ryan & Wolff, Hendrik, 2008. "Daylight time and energy: Evidence from an Australian experiment," Journal of Environmental Economics and Management, Elsevier, vol. 56(3), pages 207-220, November.
    9. Shimoda, Yoshiyuki & Asahi, Takahiro & Taniguchi, Ayako & Mizuno, Minoru, 2007. "Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model," Energy, Elsevier, vol. 32(9), pages 1617-1633.
    10. Halvorsen, Robert, 1975. "Residential Demand for Electric Energy," The Review of Economics and Statistics, MIT Press, vol. 57(1), pages 12-18, February.
    11. Aries, Myriam B.C. & Newsham, Guy R., 2008. "Effect of daylight saving time on lighting energy use: A literature review," Energy Policy, Elsevier, vol. 36(6), pages 1858-1866, June.
    12. Matthew J. Kotchen & Laura E. Grant, 2011. "Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1172-1185, November.
    13. Awad Momani, Mohammad & Yatim, Baharudin & Ali, Mohd Alauddin Mohd, 2009. "The impact of the daylight saving time on electricity consumption--A case study from Jordan," Energy Policy, Elsevier, vol. 37(5), pages 2042-2051, May.
    14. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769, April.
    15. Choi, Seungmoon & Pellen, Alistair & Masson, Virginie, 2017. "How does daylight saving time affect electricity demand? An answer using aggregate data from a natural experiment in Western Australia," Energy Economics, Elsevier, vol. 66(C), pages 247-260.
    16. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    17. Verdejo, Humberto & Becker, Cristhian & Echiburu, Diego & Escudero, William & Fucks, Emiliano, 2016. "Impact of daylight saving time on the Chilean residential consumption," Energy Policy, Elsevier, vol. 88(C), pages 456-464.
    18. Ahuja, Dilip R. & SenGupta, D.P., 2012. "Year-round daylight saving time will save more energy in India than corresponding DST or time zones," Energy Policy, Elsevier, vol. 42(C), pages 657-669.
    19. Daniela Marshall, 2010. "El Consumo Eléctrico Residencial en Chile en 2008," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 47(135), pages 57-89.
    20. Karasu, Servet, 2010. "The effect of daylight saving time options on electricity consumption of Turkey," Energy, Elsevier, vol. 35(9), pages 3773-3782.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Havranek, Dominik Herman, and Zuzana Irsova, 2018. "Does Daylight Saving Save Electricity? A Meta-Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. López, Miguel, 2020. "Daylight effect on the electricity demand in Spain and assessment of Daylight Saving Time policies," Energy Policy, Elsevier, vol. 140(C).
    3. Bergland, Olvar & Mirza, Faisal, 2017. "Latitudinal Effect on Energy Savings from Daylight Savings Time," Working Paper Series 08-2017, Norwegian University of Life Sciences, School of Economics and Business.
    4. Kudela, Peter & Havranek, Tomas & Herman, Dominik & Irsova, Zuzana, 2020. "Does daylight saving time save electricity? Evidence from Slovakia," Energy Policy, Elsevier, vol. 137(C).
    5. Havranek, Tomas & Herman, Dominik & Irsova, Zuzana, 2016. "Does Daylight Saving Save Energy? A Meta-Analysis," MPRA Paper 74518, University Library of Munich, Germany.
    6. Hancevic, Pedro & Margulis, Diego, 2016. "Daylight saving time and energy consumption: The case of Argentina," MPRA Paper 80481, University Library of Munich, Germany.
    7. Salas Rodriguez, Hugo & Hancevic, Pedro, 2020. "The unexpected effects of daylight-saving time: Traffic accidents in Mexican municipalities," MPRA Paper 101835, University Library of Munich, Germany.
    8. Blake Shaffer, 2019. "Location matters: Daylight saving time and electricity demand," Canadian Journal of Economics, Canadian Economics Association, vol. 52(4), pages 1374-1400, November.
    9. Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, Open Access Journal, vol. 14(1), pages 1-14, December.
    10. Mirza, Faisal Mehmood & Bergland, Olvar, 2011. "The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden," Energy Policy, Elsevier, vol. 39(6), pages 3558-3571, June.
    11. Choi, Seungmoon & Pellen, Alistair & Masson, Virginie, 2017. "How does daylight saving time affect electricity demand? An answer using aggregate data from a natural experiment in Western Australia," Energy Economics, Elsevier, vol. 66(C), pages 247-260.
    12. Shaffer, Blake, 2017. "Location matters: daylight saving time and electricity use," MPRA Paper 84053, University Library of Munich, Germany.
    13. Christian Bünnings & Valentin Schiele, 2021. "Spring Forward, Don't Fall Back: The Effect of Daylight Saving Time on Road Safety," The Review of Economics and Statistics, MIT Press, vol. 103(1), pages 165-176, March.
    14. Krarti, Moncef & Hajiah, Ali, 2011. "Analysis of impact of daylight time savings on energy use of buildings in Kuwait," Energy Policy, Elsevier, vol. 39(5), pages 2319-2329, May.
    15. Bünnings, Christian & Schiele, Valentin, 2018. "Spring forward, don't fall back: The effect of daylight saving time on road safety," Ruhr Economic Papers 768, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Verdejo, Humberto & Becker, Cristhian & Echiburu, Diego & Escudero, William & Fucks, Emiliano, 2016. "Impact of daylight saving time on the Chilean residential consumption," Energy Policy, Elsevier, vol. 88(C), pages 456-464.
    17. Matthew J. Kotchen & Laura E. Grant, 2011. "Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1172-1185, November.
    18. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    19. Nicholas Rivers, 2018. "Does Daylight Savings Time Save Energy? Evidence from Ontario," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 517-543, June.
    20. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2016. "Disentangling temporal patterns in elasticities: A functional coefficient panel analysis of electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 232-243.

    More about this item

    Keywords

    Daylight saving time; Differences-in-Differences; Mexico;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219318195. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.