IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i9p4955-4965.html
   My bibliography  Save this article

The impact on energy consumption of daylight saving clock changes

Author

Listed:
  • Hill, S.I.
  • Desobry, F.
  • Garnsey, E.W.
  • Chong, Y.-F.

Abstract

The focus of this work is an investigation of the effect of prevailing time regime on energy consumption. In particular we perform analysis demonstrating potential energy savings which could be obtained were Great Britain to maintain daylight savings time (DST) over winter, instead of reverting to Greenwich mean time (GMT). We review the literature on the effect of DST on energy consumption and show that this indicates a justification for considering the issue. Our headline result is in agreement with many related studies in that advancing the clock by an hour in winter would lead to energy savings of at least 0.3% of daily demand in Great Britain. In deriving this result we have adopted methodologies currently used in load prediction, in particular Support Vector Regression, to estimate energy demand on a half-hourly basis. Corresponding cost savings are found to be higher (due to the nonlinear increase of costs) and we find them to be on the order of 0.6% over the months considered. In terms of environmental impact we find the saving to be approximately equivalent to 450,000Â ton of CO2. In deriving these results we adopt a conservative approach such that we consider them lower bounds on any true savings.

Suggested Citation

  • Hill, S.I. & Desobry, F. & Garnsey, E.W. & Chong, Y.-F., 2010. "The impact on energy consumption of daylight saving clock changes," Energy Policy, Elsevier, vol. 38(9), pages 4955-4965, September.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:9:p:4955-4965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00269-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aries, Myriam B.C. & Newsham, Guy R., 2008. "Effect of daylight saving time on lighting energy use: A literature review," Energy Policy, Elsevier, vol. 36(6), pages 1858-1866, June.
    2. Hillman, Mayer & Parker, Jon, 1988. "More daylight, less electricity," Energy Policy, Elsevier, vol. 16(5), pages 514-515, October.
    3. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kudela, Peter & Havranek, Tomas & Herman, Dominik & Irsova, Zuzana, 2020. "Does daylight saving time save electricity? Evidence from Slovakia," Energy Policy, Elsevier, vol. 137(C).
    2. Ahuja, Dilip R. & SenGupta, D.P., 2012. "Year-round daylight saving time will save more energy in India than corresponding DST or time zones," Energy Policy, Elsevier, vol. 42(C), pages 657-669.
    3. López, Miguel, 2020. "Daylight effect on the electricity demand in Spain and assessment of Daylight Saving Time policies," Energy Policy, Elsevier, vol. 140(C).
    4. Hugo Salas & Pedro Ignacio Hancevic, 2023. "The unexpected effects of daylight-saving time: Traffic accidents in Mexican municipalities," EconoQuantum, Revista de Economia y Finanzas, Universidad de Guadalajara, Centro Universitario de Ciencias Economico Administrativas, Departamento de Metodos Cuantitativos y Maestria en Economia., vol. 20(1), pages 1-29, Enero-Jun.
    5. Verdejo, Humberto & Becker, Cristhian & Echiburu, Diego & Escudero, William & Fucks, Emiliano, 2016. "Impact of daylight saving time on the Chilean residential consumption," Energy Policy, Elsevier, vol. 88(C), pages 456-464.
    6. Havranek, Tomas & Herman, Dominik & Irsova, Zuzana, 2016. "Does Daylight Saving Save Energy? A Meta-Analysis," MPRA Paper 74518, University Library of Munich, Germany.
    7. Tomas Havranek & Dominik Herman & Zuzana Irsova, 2018. "Does Daylight Saving Save Electricity? A Meta-Analysis," The Energy Journal, , vol. 39(2), pages 35-61, March.
    8. Flores, Daniel & Luna, Edgar M., 2019. "An econometric evaluation of daylight saving time in Mexico," Energy, Elsevier, vol. 187(C).
    9. Bircan, Çağatay & Wirsching, Elisa, 2023. "Daylight saving all year round? Evidence from a national experiment," Energy Economics, Elsevier, vol. 127(PB).
    10. Mirza, Faisal Mehmood & Bergland, Olvar, 2011. "The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden," Energy Policy, Elsevier, vol. 39(6), pages 3558-3571, June.
    11. Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, vol. 14(1), pages 1-14, December.
    12. Hancevic, Pedro & Margulis, Diego, 2016. "Daylight saving time and energy consumption: The case of Argentina," MPRA Paper 80481, University Library of Munich, Germany.
    13. Torriti, Jacopo, 2012. "Demand Side Management for the European Supergrid: Occupancy variances of European single-person households," Energy Policy, Elsevier, vol. 44(C), pages 199-206.
    14. Bergland, Olvar & Mirza, Faisal, 2017. "Latitudinal Effect on Energy Savings from Daylight Savings Time," Working Paper Series 08-2017, Norwegian University of Life Sciences, School of Economics and Business.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirza, Faisal Mehmood & Bergland, Olvar, 2011. "The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden," Energy Policy, Elsevier, vol. 39(6), pages 3558-3571, June.
    2. Hancevic, Pedro & Margulis, Diego, 2016. "Daylight saving time and energy consumption: The case of Argentina," MPRA Paper 80481, University Library of Munich, Germany.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Blake Shaffer, 2019. "Location matters: Daylight saving time and electricity demand," Canadian Journal of Economics, Canadian Economics Association, vol. 52(4), pages 1374-1400, November.
    5. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    6. Tomas Havranek & Dominik Herman & Zuzana Irsova, 2018. "Does Daylight Saving Save Electricity? A Meta-Analysis," The Energy Journal, , vol. 39(2), pages 35-61, March.
    7. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    8. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    9. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    10. Matthew J. Kotchen & Laura E. Grant, 2011. "Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1172-1185, November.
    11. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    12. Karl Benediktsson & Stanley D. Brunn, 2015. "Time Zone Politics and Challenges of Globalisation," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 106(3), pages 276-290, July.
    13. In, Soh Young & Manav, Berk & Venereau, Clothilde M.A. & Cruz R., Luis Enrique & Weyant, John P., 2022. "Climate-related financial risk assessment on energy infrastructure investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Joan Costa‐Font & Sarah Fleche & Ricardo Pagan, 2024. "The welfare effects of time reallocation: evidence from Daylight Saving Time," Economica, London School of Economics and Political Science, vol. 91(362), pages 547-568, April.
    15. Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.
    16. Torgeir Ericson, 2006. "Time-differentiated pricing and direct load control of residential electricity consumption," Discussion Papers 461, Statistics Norway, Research Department.
    17. Nicholas Rivers, 2018. "Does Daylight Savings Time Save Energy? Evidence from Ontario," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 517-543, June.
    18. Rui Xing & Tatsuya Hanaoka & Yuko Kanamori & Hancheng Dai & Toshihiko Masui, 2015. "Energy Service Demand Projections and CO 2 Reduction Potentials in Rural Households in 31 Chinese Provinces," Sustainability, MDPI, vol. 7(12), pages 1-14, November.
    19. Kai Zhang & Dong Yan, 2023. "Exploring Indoor and Outdoor Residential Factors of High-Density Communities for Promoting the Housing Development," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    20. Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 55-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:9:p:4955-4965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.