IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v127y2023ipbs0140988323005911.html
   My bibliography  Save this article

Daylight saving all year round? Evidence from a national experiment

Author

Listed:
  • Bircan, Çağatay
  • Wirsching, Elisa

Abstract

We study the effects of staying on daylight saving time (DST) permanently on electricity consumption, generation, and emissions. In October 2016, Turkey chose to stay on DST all year round. Employing alternative identification methods, we find a negligible overall impact on consumption. However, the policy has a strong intra-day distributional effect, increasing consumption in the early morning and reducing it in the late afternoon. This change in the load shape reduced generation by dirtier fossil fuel plants and increased it by cleaner renewable sources that can more easily satisfy peak load generation. Emissions from generation decreased as a result. A large presence of hydropower, which is a reliable provider of energy to the grid in peak times, was crucial to achieve this reduction.

Suggested Citation

  • Bircan, Çağatay & Wirsching, Elisa, 2023. "Daylight saving all year round? Evidence from a national experiment," Energy Economics, Elsevier, vol. 127(PB).
  • Handle: RePEc:eee:eneeco:v:127:y:2023:i:pb:s0140988323005911
    DOI: 10.1016/j.eneco.2023.107093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323005911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew J. Kotchen & Laura E. Grant, 2011. "Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1172-1185, November.
    2. Judson Boomhower & Lucas Davis, 2020. "Do Energy Efficiency Investments Deliver at the Right Time?," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 115-139, January.
    3. Mirza, Faisal Mehmood & Bergland, Olvar, 2011. "The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden," Energy Policy, Elsevier, vol. 39(6), pages 3558-3571, June.
    4. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    5. Verdejo, Humberto & Becker, Cristhian & Echiburu, Diego & Escudero, William & Fucks, Emiliano, 2016. "Impact of daylight saving time on the Chilean residential consumption," Energy Policy, Elsevier, vol. 88(C), pages 456-464.
    6. Laura Mørch Andersen & Lars Gårn Hansen & Carsten Lynge Jensen & Frank A. Wolak, 2019. "Can Incentives to Increase Electricity Use Reduce the Cost of Integrating Renewable Resources," NBER Working Papers 25615, National Bureau of Economic Research, Inc.
    7. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    8. Awad Momani, Mohammad & Yatim, Baharudin & Ali, Mohd Alauddin Mohd, 2009. "The impact of the daylight saving time on electricity consumption--A case study from Jordan," Energy Policy, Elsevier, vol. 37(5), pages 2042-2051, May.
    9. Choi, Seungmoon & Pellen, Alistair & Masson, Virginie, 2017. "How does daylight saving time affect electricity demand? An answer using aggregate data from a natural experiment in Western Australia," Energy Economics, Elsevier, vol. 66(C), pages 247-260.
    10. Hancevic, Pedro & Margulis, Diego, 2016. "Daylight saving time and energy consumption: The case of Argentina," MPRA Paper 80481, University Library of Munich, Germany.
    11. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    12. Sexton, Alison L. & Beatty, Timothy K.M., 2014. "Behavioral responses to Daylight Savings Time," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 290-307.
    13. Hill, S.I. & Desobry, F. & Garnsey, E.W. & Chong, Y.-F., 2010. "The impact on energy consumption of daylight saving clock changes," Energy Policy, Elsevier, vol. 38(9), pages 4955-4965, September.
    14. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kudela, Peter & Havranek, Tomas & Herman, Dominik & Irsova, Zuzana, 2020. "Does daylight saving time save electricity? Evidence from Slovakia," Energy Policy, Elsevier, vol. 137(C).
    2. Tomas Havranek, Dominik Herman, and Zuzana Irsova, 2018. "Does Daylight Saving Save Electricity? A Meta-Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Flores, Daniel & Luna, Edgar M., 2019. "An econometric evaluation of daylight saving time in Mexico," Energy, Elsevier, vol. 187(C).
    4. López, Miguel, 2020. "Daylight effect on the electricity demand in Spain and assessment of Daylight Saving Time policies," Energy Policy, Elsevier, vol. 140(C).
    5. Bergland, Olvar & Mirza, Faisal, 2017. "Latitudinal Effect on Energy Savings from Daylight Savings Time," Working Paper Series 08-2017, Norwegian University of Life Sciences, School of Economics and Business.
    6. Blake Shaffer, 2019. "Location matters: Daylight saving time and electricity demand," Canadian Journal of Economics, Canadian Economics Association, vol. 52(4), pages 1374-1400, November.
    7. Guven, Cahit & Yuan, Haishan & Zhang, Quanda & Aksakalli, Vural, 2021. "When does daylight saving time save electricity? Weather and air-conditioning," Energy Economics, Elsevier, vol. 98(C).
    8. Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, vol. 14(1), pages 1-14, December.
    9. Shaffer, Blake, 2017. "Location matters: daylight saving time and electricity use," MPRA Paper 84053, University Library of Munich, Germany.
    10. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    11. Hugo Salas & Pedro Ignacio Hancevic, 2023. "The unexpected effects of daylight-saving time: Traffic accidents in Mexican municipalities," EconoQuantum, Revista de Economia y Finanzas, Universidad de Guadalajara, Centro Universitario de Ciencias Economico Administrativas, Departamento de Metodos Cuantitativos y Maestria en Economia., vol. 20(1), pages 1-29, Enero-Jun.
    12. Grant Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    14. Choi, Seungmoon & Pellen, Alistair & Masson, Virginie, 2017. "How does daylight saving time affect electricity demand? An answer using aggregate data from a natural experiment in Western Australia," Energy Economics, Elsevier, vol. 66(C), pages 247-260.
    15. Hancevic, Pedro & Margulis, Diego, 2016. "Daylight saving time and energy consumption: The case of Argentina," MPRA Paper 80481, University Library of Munich, Germany.
    16. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    17. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    18. Humberto Verdejo & Emiliano Fucks Jara & Tomas Castillo & Cristhian Becker & Diego Vergara & Rafael Sebastian & Guillermo Guzmán & Francisco Tobar & Juan Zolezzi, 2023. "Analysis and Modeling of Residential Energy Consumption Profiles Using Device-Level Data: A Case Study of Homes Located in Santiago de Chile," Sustainability, MDPI, vol. 16(1), pages 1-32, December.
    19. J. Scott Holladay & Steven Soloway, 2015. "The Environmental Impacts of Fuel Switching Power Plants," Working Papers 2015-05, University of Tennessee, Department of Economics.
    20. Brittany Tarufelli & Ben Gilbert, 2019. "Leakage in Regional Climate Policy? Implications of Electricity Market Design," Working Papers 2019-07, Colorado School of Mines, Division of Economics and Business, revised Dec 2021.

    More about this item

    Keywords

    Daylight saving time; Electricity consumption; Power generation; Greenhouse gas emissions;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:127:y:2023:i:pb:s0140988323005911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.