IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v92y2016icp348-358.html
   My bibliography  Save this article

Timing-based business models for flexibility creation in the electric power sector

Author

Listed:
  • Helms, Thorsten
  • Loock, Moritz
  • Bohnsack, René

Abstract

Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy.

Suggested Citation

  • Helms, Thorsten & Loock, Moritz & Bohnsack, René, 2016. "Timing-based business models for flexibility creation in the electric power sector," Energy Policy, Elsevier, vol. 92(C), pages 348-358.
  • Handle: RePEc:eee:enepol:v:92:y:2016:i:c:p:348-358
    DOI: 10.1016/j.enpol.2016.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516300763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    2. Tan Li & Larry D. Qiu, 2014. "IPR, Trade, FDI, and Technology Transfer," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 9(4), pages 529-555, December.
    3. Apajalahti, Eeva-Lotta & Lovio, Raimo & Heiskanen, Eva, 2015. "From demand side management (DSM) to energy efficiency services: A Finnish case study," Energy Policy, Elsevier, vol. 81(C), pages 76-85.
    4. David J. TEECE, 2008. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 5, pages 67-87, World Scientific Publishing Co. Pte. Ltd..
    5. Paul R. Kleindorfer & D. J. Wu, 2003. "Integrating Long- and Short-Term Contracting via Business-to-Business Exchanges for Capital-Intensive Industries," Management Science, INFORMS, vol. 49(11), pages 1597-1615, November.
    6. Anaya, Karim L. & Pollitt, Michael G., 2015. "Integrating distributed generation: Regulation and trends in three leading countries," Energy Policy, Elsevier, vol. 85(C), pages 475-486.
    7. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    8. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    9. Duplessis, Bruno & Adnot, Jérôme & Dupont, Maxime & Racapé, François, 2012. "An empirical typology of energy services based on a well-developed market: France," Energy Policy, Elsevier, vol. 45(C), pages 268-276.
    10. Budde Christensen, Thomas & Wells, Peter & Cipcigan, Liana, 2012. "Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark," Energy Policy, Elsevier, vol. 48(C), pages 498-505.
    11. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    12. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    13. Henry Chesbrough & Richard S. Rosenbloom, 2002. "The role of the business model in capturing value from innovation: evidence from Xerox Corporation's technology spin-off companies," Industrial and Corporate Change, Oxford University Press, vol. 11(3), pages 529-555, June.
    14. Schleicher-Tappeser, Ruggero, 2012. "How renewables will change electricity markets in the next five years," Energy Policy, Elsevier, vol. 48(C), pages 64-75.
    15. Philippe Menanteau & Dominique Finon & Marie-Laure Lamy, 2003. "Prices versus quantities :environmental policies for promoting the development of renewable energy," Post-Print halshs-00480457, HAL.
    16. Loock, Moritz, 2012. "Going beyond best technology and lowest price: on renewable energy investors’ preference for service-driven business models," Energy Policy, Elsevier, vol. 40(C), pages 21-27.
    17. Jeremy C. Bellah & Kunpeng Li & Pamela J. Zelbst & Qiannong Gu, 2014. "Use of RFID Technology for Automatic Job Costing," International Journal of Information Systems and Social Change (IJISSC), IGI Global, vol. 5(2), pages 53-68, April.
    18. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    19. Mathieu, Johanna L. & Dyson, Mark E.H. & Callaway, Duncan S., 2015. "Resource and revenue potential of California residential load participation in ancillary services," Energy Policy, Elsevier, vol. 80(C), pages 76-87.
    20. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    21. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    22. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    23. Richter, Mario, 2013. "Business model innovation for sustainable energy: German utilities and renewable energy," Energy Policy, Elsevier, vol. 62(C), pages 1226-1237.
    24. Giordano, Vincenzo & Fulli, Gianluca, 2012. "A business case for Smart Grid technologies: A systemic perspective," Energy Policy, Elsevier, vol. 40(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    2. Emmanuelle Reuter, 2022. "Hybrid business models in the sharing economy: The role of business model design for managing the environmental paradox," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 603-618, February.
    3. Hu, Bo & Zhou, P. & Zhang, L.P., 2022. "A digital business model for accelerating distributed renewable energy expansion in rural China," Applied Energy, Elsevier, vol. 316(C).
    4. Pau Lloret-Gallego & Mònica Aragüés-Peñalba & Lien Van Schepdael & Eduard Bullich-Massagué & Pol Olivella-Rosell & Andreas Sumper, 2017. "Methodology for the Evaluation of Resilience of ICT Systems for Smart Distribution Grids," Energies, MDPI, vol. 10(9), pages 1-16, August.
    5. Ute Paukstadt & Jörg Becker, 2021. "Uncovering the business value of the internet of things in the energy domain – a review of smart energy business models," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 51-66, March.
    6. Krawinkler, Andreas & Breitenecker, Robert J. & Maresch, Daniela, 2022. "Heuristic decision-making in the green energy context:Bringing together simple rules and data-driven mathematical optimization," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    7. Pereira, Guillermo Ivan & Niesten, Eva & Pinkse, Jonatan, 2022. "Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    8. Lin, Boqiang & Chen, Jiaying & Wesseh, Presley K., 2022. "Peak-valley tariffs and solar prosumers: Why renewable energy policies should target local electricity markets," Energy Policy, Elsevier, vol. 165(C).
    9. Gonçalves, Luisa & Patrício, Lia, 2022. "From smart technologies to value cocreation and customer engagement with smart energy services," Energy Policy, Elsevier, vol. 170(C).
    10. Daziano, Ricardo A., 2020. "Flexible customer willingness to pay for bundled smart home energy products and services," Resource and Energy Economics, Elsevier, vol. 61(C).
    11. Kubli, Merla & Puranik, Sanket, 2023. "A typology of business models for energy communities: Current and emerging design options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Guray Kara & Asgeir Tomasgard & Hossein Farahmand, 2021. "Characterization of flexible electricity in power and energy markets," Papers 2109.03000, arXiv.org.
    13. Chenjun Sun & Zengqiang Mi & Hui Ren & Zhipeng Jing & Jinling Lu & David Watts, 2019. "Multi-Dimensional Indexes for the Sustainability Evaluation of an Active Distribution Network," Energies, MDPI, vol. 12(3), pages 1-24, January.
    14. Lago, Jesus & Poplavskaya, Ksenia & Suryanarayana, Gowri & De Schutter, Bart, 2021. "A market framework for grid balancing support through imbalances trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    16. Li, Changsheng & Shen, Bo, 2019. "Accelerating renewable energy electrification and rural economic development with an innovative business model: A case study in China," Energy Policy, Elsevier, vol. 127(C), pages 280-286.
    17. Juliana Zapata Riveros & Matthias Speich & Mirjam West & Silvia Ulli-Beer, 2021. "Combining Business Model Innovation and Model-Based Analysis to Tackle the Deep Uncertainty of Societal Transitions—A Case Study on Industrial Electrification and Power Grid Management," Sustainability, MDPI, vol. 13(13), pages 1-29, June.
    18. Kara, Güray & Tomasgard, Asgeir & Farahmand, Hossein, 2022. "Characterizing flexibility in power markets and systems," Utilities Policy, Elsevier, vol. 75(C).
    19. Bohnsack, René, 2018. "Local niches and firm responses in sustainability transitions: The case of low-emission vehicles in China," Technovation, Elsevier, vol. 70, pages 20-32.
    20. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    21. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    22. Kubli, Merla & Canzi, Patrizio, 2021. "Business strategies for flexibility aggregators to steer clear of being “too small to bid”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    23. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helms, Thorsten, 2016. "Asset transformation and the challenges to servitize a utility business model," Energy Policy, Elsevier, vol. 91(C), pages 98-112.
    2. Florian Lüdeke‐Freund, 2020. "Sustainable entrepreneurship, innovation, and business models: Integrative framework and propositions for future research," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 665-681, February.
    3. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    4. Karakaya, Emrah & Nuur, Cali & Hidalgo, Antonio, 2016. "Business model challenge: Lessons from a local solar company," Renewable Energy, Elsevier, vol. 85(C), pages 1026-1035.
    5. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    6. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    7. Herbes, Carsten & Brummer, Vasco & Rognli, Judith & Blazejewski, Susanne & Gericke, Naomi, 2017. "Responding to policy change: New business models for renewable energy cooperatives – Barriers perceived by cooperatives’ members," Energy Policy, Elsevier, vol. 109(C), pages 82-95.
    8. Michael Hamwi & Jérémy Legardeur & Iban Lizarralde, 2016. "Energy Product Service Systems as core element of energy transition in the household sector: The Greenplay project," Post-Print hal-01404187, HAL.
    9. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.
    10. Gabriel, Cle-Anne & Kirkwood, Jodyanne, 2016. "Business models for model businesses: Lessons from renewable energy entrepreneurs in developing countries," Energy Policy, Elsevier, vol. 95(C), pages 336-349.
    11. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin & Fridgen, Gilbert, 2021. "Renewable electricity business models in a post feed-in tariff era," Energy, Elsevier, vol. 216(C).
    12. Li, Changsheng & Shen, Bo, 2019. "Accelerating renewable energy electrification and rural economic development with an innovative business model: A case study in China," Energy Policy, Elsevier, vol. 127(C), pages 280-286.
    13. Duscha, Vicki & Fougeyrollas, Arnaud & Nathani, Carsten & Pfaff, Matthias & Ragwitz, Mario & Resch, Gustav & Schade, Wolfgang & Breitschopf, Barbara & Walz, Rainer, 2016. "Renewable energy deployment in Europe up to 2030 and the aim of a triple dividend," Energy Policy, Elsevier, vol. 95(C), pages 314-323.
    14. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    15. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    16. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    17. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2020. "Designing a regulatory tool for coordinated investment in renewable and conventional generation capacities considering market equilibria," Applied Energy, Elsevier, vol. 279(C).
    18. Fagiani, Riccardo & Barquín, Julián & Hakvoort, Rudi, 2013. "Risk-based assessment of the cost-efficiency and the effectivity of renewable energy support schemes: Certificate markets versus feed-in tariffs," Energy Policy, Elsevier, vol. 55(C), pages 648-661.
    19. Schaefer, Manuel S. & Lloyd, Bob & Stephenson, Janet R., 2012. "The suitability of a feed-in tariff for wind energy in New Zealand—A study based on stakeholders' perspectives," Energy Policy, Elsevier, vol. 43(C), pages 80-91.
    20. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:92:y:2016:i:c:p:348-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.