IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v60y2013icp906-915.html
   My bibliography  Save this article

Renewable electricity generation in India—A learning rate analysis

Author

Listed:
  • Partridge, Ian

Abstract

The cost of electricity generation using renewable technologies is widely assumed to be higher than the cost for conventional generation technologies, but likely to fall with growing experience of the technologies concerned. This paper tests the second part of that statement using learning rate analysis, based on large samples of wind and small hydro projects in India, and projects likely changes in these costs through 2020. It is the first study of learning rates for renewable generation technologies in India, and only the second in any developing country—it provides valuable input to the development of Indian energy policy and will be relevant to policy makers in other developing countries.

Suggested Citation

  • Partridge, Ian, 2013. "Renewable electricity generation in India—A learning rate analysis," Energy Policy, Elsevier, vol. 60(C), pages 906-915.
  • Handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:906-915 DOI: 10.1016/j.enpol.2013.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513003704
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    2. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    3. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    4. William D. Nordhaus, 2009. "The Perils of the Learning Model For Modeling Endogenous Technological Change," NBER Working Papers 14638, National Bureau of Economic Research, Inc.
    5. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    6. Cropper, Maureen & Gamkhar, Shama & Malik, Kabir & Limonov, Alex & Partridge, Ian, 2012. "The Health Effects of Coal Electricity Generation in India," Discussion Papers dp-12-25, Resources For the Future.
    7. Donovan, Charles & Nuñez, Laura, 2012. "Figuring what’s fair: The cost of equity capital for renewable energy in emerging markets," Energy Policy, Elsevier, vol. 40(C), pages 49-58.
    8. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    9. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    10. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    11. Alberth, Stephan & Hope, Chris, 2007. "Climate modelling with endogenous technical change: Stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model," Energy Policy, Elsevier, vol. 35(3), pages 1795-1807, March.
    12. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
    2. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo Group Munich.
    3. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.

    More about this item

    Keywords

    Renewable energy; Learning rate analysis; India;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:906-915. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.