IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Renewable electricity generation in India—A learning rate analysis

  • Partridge, Ian
Registered author(s):

    The cost of electricity generation using renewable technologies is widely assumed to be higher than the cost for conventional generation technologies, but likely to fall with growing experience of the technologies concerned. This paper tests the second part of that statement using learning rate analysis, based on large samples of wind and small hydro projects in India, and projects likely changes in these costs through 2020. It is the first study of learning rates for renewable generation technologies in India, and only the second in any developing country—it provides valuable input to the development of Indian energy policy and will be relevant to policy makers in other developing countries.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513003704
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Policy.

    Volume (Year): 60 (2013)
    Issue (Month): C ()
    Pages: 906-915

    as
    in new window

    Handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:906-915
    Contact details of provider: Web page: http://www.elsevier.com/locate/enpol

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. William D. Nordhaus, 2009. "The Perils of the Learning Model For Modeling Endogenous Technological Change," Cowles Foundation Discussion Papers 1685, Cowles Foundation for Research in Economics, Yale University.
    2. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    3. Paul L. Joskow, 2010. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," Working Papers 1013, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    4. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    5. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    6. Donovan, Charles & Nuñez, Laura, 2012. "Figuring what’s fair: The cost of equity capital for renewable energy in emerging markets," Energy Policy, Elsevier, vol. 40(C), pages 49-58.
    7. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    8. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    9. Cropper, Maureen & Gamkhar, Shama & Malik, Kabir & Limonov, Alex & Partridge, Ian, 2012. "The Health Effects of Coal Electricity Generation in India," Discussion Papers dp-12-25, Resources For the Future.
    10. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    11. Alberth, Stephan & Hope, Chris, 2007. "Climate modelling with endogenous technical change: Stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model," Energy Policy, Elsevier, vol. 35(3), pages 1795-1807, March.
    12. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:906-915. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.