IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v58y2013icp38-48.html
   My bibliography  Save this article

Life cycle greenhouse gas emission assessment of major petroleum oil products for transport and household sectors in India

Author

Listed:
  • Garg, Amit
  • Vishwanathan, Saritha
  • Avashia, Vidhee

Abstract

Energy security concerns due to high oil import dependence and climate change concerns due to related greenhouse gas emissions are important policy discussions in India. Could life cycle assessment (LCA) of petroleum oil products provide inputs to crude oil sourcing and domestic oil pricing policies to address the two concerns? This paper presents a baseline study on LCA of petroleum products in India from Well to Storage depending on the oil source, type of refinery, product and the selected destinations. The LCA based GHG emissions are found to be higher by 4–12 per cent than GHG emissions from direct fuel consumption alone for LPG, 7–10 per cent for Gasoline, 3–9 per cent for Diesel and 4–10 per cent for Kerosene based on various supply chain routes supplying oil to six largest cities in India. Overall the energy used in oil exploration, refinery and transportation in the LCA have a share of 72–77 per cent, 11–15 per cent and 6–8 per cent, respectively. The paper proposes imposing a relative carbon cess for various oil products in different Indian cities. States could accommodate this additional carbon cess by reducing their respective state taxes without increasing the final delivery price to the consumers.

Suggested Citation

  • Garg, Amit & Vishwanathan, Saritha & Avashia, Vidhee, 2013. "Life cycle greenhouse gas emission assessment of major petroleum oil products for transport and household sectors in India," Energy Policy, Elsevier, vol. 58(C), pages 38-48.
  • Handle: RePEc:eee:enepol:v:58:y:2013:i:c:p:38-48
    DOI: 10.1016/j.enpol.2013.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513001031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parikh, Jyoti & Purohit, Pallav & Maitra, Pallavi, 2007. "Demand projections of petroleum products and natural gas in India," Energy, Elsevier, vol. 32(10), pages 1825-1837.
    2. Hackney, Jeremy & de Neufville, Richard, 2001. "Life cycle model of alternative fuel vehicles: emissions, energy, and cost trade-offs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(3), pages 243-266, March.
    3. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    4. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    5. Garg, Amit, 2011. "Pro-equity Effects of Ancillary Benefits of Climate Change Policies: A Case Study of Human Health Impacts of Outdoor Air Pollution in New Delhi," World Development, Elsevier, vol. 39(6), pages 1002-1025, June.
    6. Kaufman, Andrew S. & Meier, Paul J. & Sinistore, Julie C. & Reinemann, Douglas J., 2010. "Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels," Energy Policy, Elsevier, vol. 38(9), pages 5229-5241, September.
    7. Datta, Ashokankur, 2010. "The incidence of fuel taxation in India," Energy Economics, Elsevier, vol. 32(Supplemen), pages 26-33, September.
    8. Tehrani Nejad M., Alireza, 2007. "Allocation of CO2 emissions in petroleum refineries to petroleum joint products: A linear programming model for practical application," Energy Economics, Elsevier, vol. 29(4), pages 974-997, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    2. Rahman, Md Mustafizur & Canter, Christina & Kumar, Amit, 2014. "Greenhouse gas emissions from recovery of various North American conventional crudes," Energy, Elsevier, vol. 74(C), pages 607-617.
    3. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    4. Vedrenne, Michel & Pérez, Javier & Lumbreras, Julio & Rodríguez, María Encarnación, 2014. "Life cycle assessment as a policy-support tool: The case of taxis in the city of Madrid," Energy Policy, Elsevier, vol. 66(C), pages 185-197.
    5. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
    2. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
    3. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    4. Thomas Bassetti & Nikos Benos & Stelios Karagiannis, 2013. "CO 2 Emissions and Income Dynamics: What Does the Global Evidence Tell Us?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 101-125, January.
    5. Xu Xu & Kevin Sylwester, 2016. "Environmental Quality and International Migration," Kyklos, Wiley Blackwell, vol. 69(1), pages 157-180, February.
    6. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    7. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    8. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    9. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    10. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    11. Wu, Xiangling & Ding, Shusheng, 2023. "The impact of the Bitcoin price on carbon neutrality: Evidence from futures markets," Finance Research Letters, Elsevier, vol. 56(C).
    12. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    13. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    14. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    15. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.
    16. Szklo, Alexandre & Schaeffer, Roberto, 2006. "Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition," Energy, Elsevier, vol. 31(14), pages 2513-2522.
    17. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2021. "Distributional Impacts of Carbon Pricing: A Meta-Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 1-42, January.
    18. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    19. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    20. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:58:y:2013:i:c:p:38-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.