IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp607-617.html
   My bibliography  Save this article

Greenhouse gas emissions from recovery of various North American conventional crudes

Author

Listed:
  • Rahman, Md Mustafizur
  • Canter, Christina
  • Kumar, Amit

Abstract

Emissions from crude recovery contribute significantly to the life cycle GHG (greenhouse gas) emissions of transportation fuels. Recovery emissions come from drilling and land use change, crude extraction, crude oil processing, venting, flaring, and fugitives. In this study an attempt has been made to provide a transparent quantification of GHG emissions from oil well drilling and land use change, crude recovery and associated gas and water treatment, and venting and flaring for five North American conventional crudes through the development of data-intensive engineering models. Estimates of emissions from crude extraction were made from recovery efficiency, the amount of energy used, and process fuel shares in extraction techniques. Extraction emissions vary from 1.24 g-CO2eq/MJ for Bow River heavy oil to 23 g-CO2eq/MJ for California's Kern County heavy oil. The amount of gas vented and flared per m3 of crude extracted was determined to quantify venting and flaring emissions. The amount of energy required for crude oil processing was quantified based on the properties of crude oil and different techniques applied in the oil fields. Of the five crudes we studied, California's Kern County heavy oil and Mars crude oil emit the highest and lowest emissions: 23.85 g-CO2eq/MJ and 3.94 g-CO2eq/MJ, respectively.

Suggested Citation

  • Rahman, Md Mustafizur & Canter, Christina & Kumar, Amit, 2014. "Greenhouse gas emissions from recovery of various North American conventional crudes," Energy, Elsevier, vol. 74(C), pages 607-617.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:607-617
    DOI: 10.1016/j.energy.2014.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    2. Garg, Amit & Vishwanathan, Saritha & Avashia, Vidhee, 2013. "Life cycle greenhouse gas emission assessment of major petroleum oil products for transport and household sectors in India," Energy Policy, Elsevier, vol. 58(C), pages 38-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aoun, Ala Eddine & Pu, Hui & Rasouli, Vamegh & Tomomewo, Olusegun & Khetib, Youcef & Ben Ameur, Mohamed Cherif, 2024. "Enhanced oil recovery through alternating gas Re-injection to reduce gas flaring in the Bakken," Energy, Elsevier, vol. 290(C).
    2. Di Lullo, Giovanni & Zhang, Hao & Kumar, Amit, 2017. "Uncertainty in well-to-tank with combustion greenhouse gas emissions of transportation fuels derived from North American crudes," Energy, Elsevier, vol. 128(C), pages 475-486.
    3. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    4. Zakari, Abdulrasheed & Khan, Irfan & Tawiah, Vincent & Alvarado, Rafael & Li, Guo, 2022. "The production and consumption of oil in Africa: The environmental implications," Resources Policy, Elsevier, vol. 78(C).
    5. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    6. Babkir Ali, 2020. "Integration of Impacts on Water, Air, Land, and Cost towards Sustainable Petroleum Oil Production in Alberta, Canada," Resources, MDPI, vol. 9(6), pages 1-17, May.
    7. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products," Energy, Elsevier, vol. 83(C), pages 65-79.
    8. Di Lullo, Giovanni & Zhang, Hao & Kumar, Amit, 2016. "Evaluation of uncertainty in the well-to-tank and combustion greenhouse gas emissions of various transportation fuels," Applied Energy, Elsevier, vol. 184(C), pages 413-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    2. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    3. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    4. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    5. Vedrenne, Michel & Pérez, Javier & Lumbreras, Julio & Rodríguez, María Encarnación, 2014. "Life cycle assessment as a policy-support tool: The case of taxis in the city of Madrid," Energy Policy, Elsevier, vol. 66(C), pages 185-197.
    6. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    7. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    8. Raj, Ratan & Ghandehariun, Samane & Kumar, Amit & Linwei, Ma, 2016. "A well-to-wire life cycle assessment of Canadian shale gas for electricity generation in China," Energy, Elsevier, vol. 111(C), pages 642-652.
    9. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    10. Zaman, Khalid & Mushtaq Khan, Muhammad & Ahmad, Mehboob, 2013. "Factors affecting commercial energy consumption in Pakistan: Progress in energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 107-135.
    11. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    12. Ke Wang & Harrie Vredenburg & Jianliang Wang & Yi Xiong & Lianyong Feng, 2017. "Energy Return on Investment of Canadian Oil Sands Extraction from 2009 to 2015," Energies, MDPI, vol. 10(5), pages 1-13, May.
    13. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    14. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    15. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    16. Brandt, Adam R. & Dale, Michael & Barnhart, Charles J., 2013. "Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach," Energy, Elsevier, vol. 62(C), pages 235-247.
    17. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The declining performance of the oil sector: Implications for global climate change mitigation," Applied Energy, Elsevier, vol. 298(C).
    18. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    19. Adam R. Brandt, 2017. "How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    20. David Grassian & Daniel Olsen, 2019. "Lifecycle Energy Accounting of Three Small Offshore Oil Fields," Energies, MDPI, vol. 12(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:607-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.