IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v56y2023ics1544612323005007.html
   My bibliography  Save this article

The impact of the Bitcoin price on carbon neutrality: Evidence from futures markets

Author

Listed:
  • Wu, Xiangling
  • Ding, Shusheng

Abstract

The Paris Agreement (COP21) has provoked a global carbon neutralization episode in recent years. The mining of Bitcoin has been criticized for its tremendous demand for electricity power, which may be contradictory to the carbon neutralization process. Therefore, we attempt to scrutinize the impact of Bitcoin futures price shocks on the carbon futures markets in this study. We investigate the Bitcoin futures price shock toward carbon futures markets in different regions. We demonstrate that this spillover effect of the Bitcoin price shock is strongest in the US carbon futures market whilst weakest in the New Zealand carbon futures market. The US carbon futures market absorbed a large proportion of the Bitcoin futures price shock because Bitcoin is priced in US dollars. Furthermore, we also unravel the fact that the effect of Bitcoin price shocks persists over a long period of time, normally persisting for 4 periods regarding all three carbon futures markets. Finally, our research sheds light on the connection between Bitcoin futures and carbon futures. The nexus of Bitcoin futures with carbon futures rests on the mining mechanism of the Bitcoin system, which has attracted enormous attention in academia.

Suggested Citation

  • Wu, Xiangling & Ding, Shusheng, 2023. "The impact of the Bitcoin price on carbon neutrality: Evidence from futures markets," Finance Research Letters, Elsevier, vol. 56(C).
  • Handle: RePEc:eee:finlet:v:56:y:2023:i:c:s1544612323005007
    DOI: 10.1016/j.frl.2023.104128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323005007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    2. Julien Prat & Benjamin Walter, 2021. "An Equilibrium Model of the Market for Bitcoin Mining," Journal of Political Economy, University of Chicago Press, vol. 129(8), pages 2415-2452.
    3. Nguyen, Khanh Quoc, 2022. "The correlation between the stock market and Bitcoin during COVID-19 and other uncertainty periods," Finance Research Letters, Elsevier, vol. 46(PA).
    4. Shangrong Jiang & Yuze Li & Quanying Lu & Yongmiao Hong & Dabo Guan & Yu Xiong & Shouyang Wang, 2021. "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Akyildirim, Erdinc & Corbet, Shaen & Katsiampa, Paraskevi & Kellard, Neil & Sensoy, Ahmet, 2020. "The development of Bitcoin futures: Exploring the interactions between cryptocurrency derivatives," Finance Research Letters, Elsevier, vol. 34(C).
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    8. Palazzi, Rafael Baptista & Júnior, Gerson de Souza Raimundo & Klotzle, Marcelo Cabus, 2021. "The dynamic relationship between bitcoin and the foreign exchange market: A nonlinear approach to test causality between bitcoin and currencies," Finance Research Letters, Elsevier, vol. 42(C).
    9. Easley, David & O'Hara, Maureen & Basu, Soumya, 2019. "From mining to markets: The evolution of bitcoin transaction fees," Journal of Financial Economics, Elsevier, vol. 134(1), pages 91-109.
    10. Schultz, Emma & Swieringa, John, 2014. "Catalysts for price discovery in the European Union Emissions Trading System," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 112-122.
    11. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    12. López-Cabarcos, M. Ángeles & Pérez-Pico, Ada M. & Piñeiro-Chousa, Juan & Šević, Aleksandar, 2021. "Bitcoin volatility, stock market and investor sentiment. Are they connected?," Finance Research Letters, Elsevier, vol. 38(C).
    13. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    14. Giudici, Paolo & Abu-Hashish, Iman, 2019. "What determines bitcoin exchange prices? A network VAR approach," Finance Research Letters, Elsevier, vol. 28(C), pages 309-318.
    15. Tong, Zhongwen & Chen, Zhanbo & Zhu, Chen, 2022. "Nonlinear dynamics analysis of cryptocurrency price fluctuations based on Bitcoin," Finance Research Letters, Elsevier, vol. 47(PB).
    16. Cao, Guangxi & Xie, Wenhao, 2022. "Asymmetric dynamic spillover effect between cryptocurrency and China's financial market: Evidence from TVP-VAR based connectedness approach," Finance Research Letters, Elsevier, vol. 49(C).
    17. Filho, Danilo Marcondes & Valk, Marcio, 2020. "Dynamic VAR model-based control charts for batch process monitoring," European Journal of Operational Research, Elsevier, vol. 285(1), pages 296-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moratis, George, 2021. "Quantifying the spillover effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 38(C).
    2. Christian M. Hafner & Sabrine Majeri, 2022. "Analysis of cryptocurrency connectedness based on network to transaction volume ratios," Digital Finance, Springer, vol. 4(2), pages 187-216, September.
    3. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. Li, Xingyi & Gan, Kai & Zhou, Qi, 2023. "Dynamic volatility connectedness among cryptocurrencies and China's financial assets in standard times and during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 51(C).
    5. Thomas F. P. Wiesen & Todd Gabe & Lakshya Bharadwaj, 2023. "Econometric connectedness as a measure of urban influence: evidence from Maine," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-16, December.
    6. Thomas F. P. Wiesen & Lakshya Bharadwaj, 2023. "Cryptocurrency Connectedness: Does Controlling for the Cross-Correlations Matter?," Applied Economics Letters, Taylor & Francis Journals, vol. 30(20), pages 2873-2880, November.
    7. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2023. "Does economic policy uncertainty drive the dynamic spillover among traditional currencies and cryptocurrencies? The role of the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 64(C).
    8. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    9. Shaen Corbet & John W. Goodell & Samet Gunay & Kerem Kaskaloglu, 2023. "Are DeFi tokens a separate asset class from conventional cryptocurrencies?," Annals of Operations Research, Springer, vol. 322(2), pages 609-630, March.
    10. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    11. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    12. Aslanidis, Nektarios & Bariviera, Aurelio F. & Perez-Laborda, Alejandro, 2021. "Are cryptocurrencies becoming more interconnected?," Economics Letters, Elsevier, vol. 199(C).
    13. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    14. Mounir Ben Mbarek & Racha Khairallah & Rochdi Feki, 2015. "Causality relationships between renewable energy, nuclear energy and economic growth in France," Environment Systems and Decisions, Springer, vol. 35(1), pages 133-142, March.
    15. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    16. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    17. Costantini, Mauro & Maaitah, Ahmad & Mishra, Tapas & Sousa, Ricardo M., 2023. "Bitcoin market networks and cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    19. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    20. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).

    More about this item

    Keywords

    Bitcoin futures; Carbon futures; Carbon neutrality; Spillover effect;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:56:y:2023:i:c:s1544612323005007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.