IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp372-381.html
   My bibliography  Save this article

Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products

Author

Listed:
  • Moretti, Christian
  • Moro, Alberto
  • Edwards, Robert
  • Rocco, Matteo Vincenzo
  • Colombo, Emanuela

Abstract

Alternative fuel policies need accurate and transparent methods to find the embedded carbon intensity of individual refinery products. This study investigates different ways of allocating greenhouse gases emissions deriving from refining and upstream crude oil supply. Allocation methods based on mass, energy content, economic value and, innovatively, added-value, are compared with the marginal refining emissions calculated by CONCAWE’s linear-programming model to the average EU refinery, which has been adopted as reference in EU legislation. Beside the most important transportation fuels (gasoline, diesel, kerosene/jet fuel and heavy fuel oil), the analysis extends to petroleum coke and refinery hydrogen. Moreover, novel criteria, based on the implications due to hydrogen usage by each fuel pathway, have been introduced to test the consistency of the analyzed approaches.

Suggested Citation

  • Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:372-381
    DOI: 10.1016/j.apenergy.2017.08.183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    2. Alamia, Alberto & Magnusson, Ingemar & Johnsson, Filip & Thunman, Henrik, 2016. "Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union," Applied Energy, Elsevier, vol. 170(C), pages 445-454.
    3. Pierru, Axel, 2010. "Allocating the CO2 emissions of an oil refinery with Aumann-Shapley prices: A reply," Energy Economics, Elsevier, vol. 32(3), pages 746-748, May.
    4. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    5. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    6. Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
    7. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Keith, David R., 2016. "Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system," Energy, Elsevier, vol. 94(C), pages 409-421.
    8. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    9. Kaufman, Andrew S. & Meier, Paul J. & Sinistore, Julie C. & Reinemann, Douglas J., 2010. "Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels," Energy Policy, Elsevier, vol. 38(9), pages 5229-5241, September.
    10. Tehrani Nejad M., Alireza, 2007. "Allocation of CO2 emissions in petroleum refineries to petroleum joint products: A linear programming model for practical application," Energy Economics, Elsevier, vol. 29(4), pages 974-997, July.
    11. Hayat, Aziz & Narayan, Paresh Kumar, 2010. "The oil stock fluctuations in the United States," Applied Energy, Elsevier, vol. 87(1), pages 178-184, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, An & Tu, Ran & Gai, Yijun & Pereira, Lucas G. & Vaughan, J. & Posen, I. Daniel & Miller, Eric J. & Hatzopoulou, Marianne, 2020. "Capturing uncertainty in emission estimates related to vehicle electrification and implications for metropolitan greenhouse gas emission inventories," Applied Energy, Elsevier, vol. 265(C).
    2. Christian Moretti & Blanca Corona & Robert Edwards & Martin Junginger & Alberto Moro & Matteo Rocco & Li Shen, 2020. "Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling," Energies, MDPI, vol. 13(14), pages 1-24, July.
    3. Delfina Rogowska & Artur Wyrwa, 2021. "Analysis of the Potential for Reducing Life Cycle Greenhouse Gas Emissions from Motor Fuels," Energies, MDPI, vol. 14(13), pages 1-19, June.
    4. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    5. Eric Johnson & Carl Vadenbo, 2020. "Modelling Variation in Petroleum Products’ Refining Footprints," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    6. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    7. Wesley Malcorps & Björn Kok & Mike van‘t Land & Maarten Fritz & Davy van Doren & Kurt Servin & Paul van der Heijden & Roy Palmer & Neil A. Auchterlonie & Max Rietkerk & Maria J. Santos & Simon J. Davi, 2019. "The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    8. Conteratto, Caroline & Artuzo, Felipe Dalzotto & Benedetti Santos, Omar Inácio & Talamini, Edson, 2021. "Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    2. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    3. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    4. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    5. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    6. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    7. Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Di Lullo, Giovanni & Zhang, Hao & Kumar, Amit, 2016. "Evaluation of uncertainty in the well-to-tank and combustion greenhouse gas emissions of various transportation fuels," Applied Energy, Elsevier, vol. 184(C), pages 413-426.
    9. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Mohammed Obaid & Arpad Torok & Jairo Ortega, 2021. "A Comprehensive Emissions Model Combining Autonomous Vehicles with Park and Ride and Electric Vehicle Transportation Policies," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    11. Czyrnek-Delêtre, Magdalena M. & Smyth, Beatrice M. & Murphy, Jerry D., 2017. "Beyond carbon and energy: The challenge in setting guidelines for life cycle assessment of biofuel systems," Renewable Energy, Elsevier, vol. 105(C), pages 436-448.
    12. Mansour, Charbel J. & Haddad, Marc G., 2017. "Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: A case-study of road transport in Lebanon," Energy Policy, Elsevier, vol. 107(C), pages 167-181.
    13. Garg, Amit & Vishwanathan, Saritha & Avashia, Vidhee, 2013. "Life cycle greenhouse gas emission assessment of major petroleum oil products for transport and household sectors in India," Energy Policy, Elsevier, vol. 58(C), pages 38-48.
    14. Choi, Wonjae & Song, Han Ho, 2018. "Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study," Applied Energy, Elsevier, vol. 230(C), pages 135-147.
    15. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    16. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    17. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    18. Tannaz Jahaniaghdam & Amir Reza Mamdoohi & Salman Aghidi Kheyrabadi & Mehdi Mehryar & Francesco Ciari, 2023. "Preferences for Alternative Fuel Trucks among International Transport Companies," World, MDPI, vol. 4(4), pages 1-21, November.
    19. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    20. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:372-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.