IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i5p1678-1686.html
   My bibliography  Save this article

Long-term trends of electric efficiencies in electricity generation in developing countries

Author

Listed:
  • Maruyama, Naoko
  • Eckelman, Matthew J.

Abstract

This analysis provides time-series data on electric efficiencies for 138 countries and regions, covering all fossil fuels for the period 1971-2005, with an emphasis on non-Organization for Economic Cooperation and Development (OECD) countries. Fossil fuel consumption for electricity generation in non-OECD countries now exceeds that in the OECD. The historical performance of the top five non-OECD consumers of each fossil fuel for which reliable data are available is presented and discussed. For each fuel, the countries that lead the world in efficiency are used for benchmarks; bringing the rest of the world up to these standards would result in energy savings of 26EJ (equivalent to 5% of global energy consumption) and CO2 emissions reduction of 2.1Pg (equivalent to 8% of global CO2 emissions). Coal showed the largest potential margin of improvement for both energy and CO2, with possible savings equivalent to 3% of current global energy consumption and 5% of global CO2 emissions. The gap in electric efficiency between OECD and non-OECD countries over the past 35 years has widened for coal-fired generation, stayed relatively constant for natural gas, but has shrunk for petroleum. The results show the very gradual nature of overall efficiency improvements and the significant differences among regions and countries.

Suggested Citation

  • Maruyama, Naoko & Eckelman, Matthew J., 2009. "Long-term trends of electric efficiencies in electricity generation in developing countries," Energy Policy, Elsevier, vol. 37(5), pages 1678-1686, May.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:5:p:1678-1686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00743-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graus, W.H.J. & Voogt, M. & Worrell, E., 2007. "International comparison of energy efficiency of fossil power generation," Energy Policy, Elsevier, vol. 35(7), pages 3936-3951, July.
    2. Graus, W.H.J. & Worrell, E., 2007. "Effects of SO2 and NOx control on energy-efficiency power generation," Energy Policy, Elsevier, vol. 35(7), pages 3898-3908, July.
    3. Jamasb, T. & Pollitt, M., 2000. "Benchmarking and regulation: international electricity experience," Utilities Policy, Elsevier, vol. 9(3), pages 107-130, September.
    4. Bugge, Jørgen & Kjær, Sven & Blum, Rudolph, 2006. "High-efficiency coal-fired power plants development and perspectives," Energy, Elsevier, vol. 31(10), pages 1437-1445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
    2. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    3. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    4. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    5. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    6. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    7. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    8. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
    9. Ang, B.W. & Zhou, P. & Tay, L.P., 2011. "Potential for reducing global carbon emissions from electricity production--A benchmarking analysis," Energy Policy, Elsevier, vol. 39(5), pages 2482-2489, May.
    10. Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
    11. Nemet, Gregory F., 2010. "Robust incentives and the design of a climate change governance regime," Energy Policy, Elsevier, vol. 38(11), pages 7216-7225, November.
    12. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    13. Sueyoshi, Toshiyuki & Goto, Mika & Sugiyama, Manabu, 2013. "DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of U.S. coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 845-857.
    14. repec:eee:renene:v:136:y:2019:i:c:p:317-330 is not listed on IDEAS
    15. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Marginal Rate of Transformation and Rate of Substitution measured by DEA environmental assessment: Comparison among European and North American nations," Energy Economics, Elsevier, vol. 56(C), pages 270-287.
    16. repec:spr:empeco:v:55:y:2018:i:3:d:10.1007_s00181-017-1298-2 is not listed on IDEAS
    17. Kabir Malik & Maureen Cropper & Alexander Limonov & Anoop Singh, 2011. "Estimating the Impact of Restructuring on Electricity Generation Efficiency: The Case of the Indian Thermal Power Sector," NBER Working Papers 17383, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:5:p:1678-1686. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.