IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp317-330.html
   My bibliography  Save this article

Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces

Author

Listed:
  • Wang, Yongpei
  • Li, Jun

Abstract

This paper focused on carbon emission reduction effect of non-fossil fuel power generation on electricity sector in China using the panel data of 30 provinces over the period 1991–2015. The empirical results of both dynamic, non-dynamic spatial panel analysis and the GS2SLS method aimed at eliminating endogeneity indicate that the increased share of non-fossil fuel power generation indeed reduce the CO2 emissions from electricity sector. However, although the spatial direct effects are positive driver for reduction of electricity-related CO2 emissions in each spatial weight matrix, on the contrary, the spatial indirect effects show that the rise of local share of non-fossil fuel power generation increases the CO2 emissions from electricity sector of other regions. This so-called “beggar-thy-neighbor” effect in the process of implementing clean-oriented energy strategy reflects an urgent need of mutually beneficial coordination mechanism between regions so as to bring maximum environmental benefits of installed clean power for the whole country.

Suggested Citation

  • Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:317-330
    DOI: 10.1016/j.renene.2019.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    2. Iwata, Hiroki & Okada, Keisuke & Samreth, Sovannroeun, 2010. "Empirical study on the environmental Kuznets curve for CO2 in France: The role of nuclear energy," Energy Policy, Elsevier, vol. 38(8), pages 4057-4063, August.
    3. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    4. Ryu, Hanee & Dorjragchaa, Shonkhor & Kim, Yeonbae & Kim, Kyunam, 2014. "Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia," Energy, Elsevier, vol. 64(C), pages 1071-1079.
    5. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    6. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    7. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    8. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    9. Li, Huanan & Wei, Yi-Ming & Mi, Zhifu, 2015. "China’s carbon flow: 2008–2012," Energy Policy, Elsevier, vol. 80(C), pages 45-53.
    10. Jiang, Suqin & Chen, Zun & Shan, Li & Chen, Xinyu & Wang, Haikun, 2017. "Committed CO2 emissions of China's coal-fired power generators from 1993 to 2013," Energy Policy, Elsevier, vol. 104(C), pages 295-302.
    11. Bekhet, Hussain Ali & Othman, Nor Salwati, 2018. "The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia," Energy Economics, Elsevier, vol. 72(C), pages 47-61.
    12. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    13. Khan, Muhammad Tariq Iqbal & Ali, Qamar & Ashfaq, Muhammad, 2018. "The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan," Renewable Energy, Elsevier, vol. 118(C), pages 437-451.
    14. Katsuya Ito, 2016. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: evidence from panel data for developed countries," Economics Bulletin, AccessEcon, vol. 36(1), pages 553-559.
    15. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    16. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    17. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    18. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    19. Jaforullah, Mohammad & King, Alan, 2015. "Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence," Energy Economics, Elsevier, vol. 49(C), pages 711-717.
    20. Yi, Hongtao, 2015. "Clean-energy policies and electricity sector carbon emissions in the U.S. states," Utilities Policy, Elsevier, vol. 34(C), pages 19-29.
    21. Yuan, Jiahai & Lei, Qi & Xiong, Minpeng & Guo, Jingsheng & Hu, Zheng, 2016. "The prospective of coal power in China: Will it reach a plateau in the coming decade?," Energy Policy, Elsevier, vol. 98(C), pages 495-504.
    22. Raymond W. Goldsmith, 1951. "A Perpetual Inventory of National Wealth," NBER Chapters, in: Studies in Income and Wealth, Volume 14, pages 5-73, National Bureau of Economic Research, Inc.
    23. Moutinho, Victor & Robaina, Margarita, 2016. "Is the share of renewable energy sources determining the CO2 kWh and income relation in electricity generation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 902-914.
    24. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    25. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    26. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    27. Mota, Rui Pedro & Dias, João, 2006. "Determinants of CO2 emissions in open economies: testing the environmental Kuznets curve hypothesis (1970-2000)," MPRA Paper 13342, University Library of Munich, Germany.
    28. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    29. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    30. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    31. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo André, 2018. "Have fossil fuels been substituted by renewables? An empirical assessment for 10 European countries," Energy Policy, Elsevier, vol. 116(C), pages 257-265.
    32. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    33. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    34. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    35. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    36. Sun, Chuanwang & Ding, Dan & Yang, Mian, 2017. "Estimating the complete CO2 emissions and the carbon intensity in India: From the carbon transfer perspective," Energy Policy, Elsevier, vol. 109(C), pages 418-427.
    37. Ali, H. & Sanjaya, S. & Suryadi, B. & Weller, S.R., 2017. "Analysing CO2 emissions from Singapore's electricity generation sector: Strategies for 2020 and beyond," Energy, Elsevier, vol. 124(C), pages 553-564.
    38. Marques, António Cardoso & Fuinhas, José Alberto & Nunes, André Roque, 2016. "Electricity generation mix and economic growth: What role is being played by nuclear sources and carbon dioxide emissions in France?," Energy Policy, Elsevier, vol. 92(C), pages 7-19.
    39. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    40. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    41. Olugbenga A. Onafowora & Oluwole Owoye, 2015. "Structural Vector Auto Regression Analysis of the Dynamic Effects of Shocks in Renewable Electricity Generation on Economic Output and Carbon Dioxide Emissions: China, India and Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1022-1032.
    42. Filippini, Massimo & Heimsch, Fabian, 2016. "The regional impact of a CO2 tax on gasoline demand: A spatial econometric approach," Resource and Energy Economics, Elsevier, vol. 46(C), pages 85-100.
    43. Maruyama, Naoko & Eckelman, Matthew J., 2009. "Long-term trends of electric efficiencies in electricity generation in developing countries," Energy Policy, Elsevier, vol. 37(5), pages 1678-1686, May.
    44. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    45. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
    46. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    47. Bai, Chong-En & Qian, Yingyi, 2010. "Infrastructure development in China: The cases of electricity, highways, and railways," Journal of Comparative Economics, Elsevier, vol. 38(1), pages 34-51, March.
    48. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    49. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    50. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    51. Ang, B.W. & Zhou, P. & Tay, L.P., 2011. "Potential for reducing global carbon emissions from electricity production--A benchmarking analysis," Energy Policy, Elsevier, vol. 39(5), pages 2482-2489, May.
    52. Steenhof, Paul A. & Weber, Chris J., 2011. "An assessment of factors impacting Canada's electricity sector's GHG emissions," Energy Policy, Elsevier, vol. 39(7), pages 4089-4096, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    2. Peng, Benhong & Wang, Yuanyuan & Wei, Guo, 2020. "Energy eco-efficiency: Is there any spatial correlation between different regions?," Energy Policy, Elsevier, vol. 140(C).
    3. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    4. Ding, Tao & Li, Jiangyuan & Shi, Xing & Li, Xuhui & Chen, Ya, 2023. "Is artificial intelligence associated with carbon emissions reduction? Case of China," Resources Policy, Elsevier, vol. 85(PB).
    5. Fahad Saleh Al-Ismail & Md Shafiul Alam & Md Shafiullah & Md Ismail Hossain & Syed Masiur Rahman, 2023. "Impacts of Renewable Energy Generation on Greenhouse Gas Emissions in Saudi Arabia: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    6. Zhang, Guo-Xing & Yang, Yang & Su, Bin & Nie, Yan & Duan, Hong-Bo, 2023. "Electricity production, power generation structure, and air pollution: A monthly data analysis for 279 cities in China (2015–2019)," Energy Economics, Elsevier, vol. 120(C).
    7. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    8. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    9. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    10. Li, Yanmei & Cui, Yifei & Cai, Bofeng & Guo, Jingpeng & Cheng, Tianhai & Zheng, Fengjie, 2020. "Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data," Applied Energy, Elsevier, vol. 266(C).
    11. Sun, Yunpeng & Guan, Weimin & Cao, Yuning & Bao, Qun, 2022. "Role of green finance policy in renewable energy deployment for carbon neutrality: Evidence from China," Renewable Energy, Elsevier, vol. 197(C), pages 643-653.
    12. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    13. Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
    14. Nenavath, Sreenu, 2022. "Impact of fintech and green finance on environmental quality protection in India: By applying the semi-parametric difference-in-differences (SDID)," Renewable Energy, Elsevier, vol. 193(C), pages 913-919.
    15. Li, Shuoshuo & Liu, Yaobin & Elahi, Ehsan & Meng, Xiao & Deng, Weifeng, 2023. "A new type of urbanization policy and transition of low-carbon society: A "local- neighborhood" perspective," Land Use Policy, Elsevier, vol. 131(C).
    16. Sahin, Habip & Esen, Hikmet, 2022. "The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey," Renewable Energy, Elsevier, vol. 192(C), pages 859-869.
    17. Lifang Guo & Hewu Kuang & Zehua Ni, 2023. "A step towards green economic policy framework: role of renewable energy and climate risk for green economic recovery," Economic Change and Restructuring, Springer, vol. 56(5), pages 3095-3115, October.
    18. Jiang, Qichuan & Ma, Xuejiao, 2021. "Spillovers of environmental regulation on carbon emissions network," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    19. Zhou, Wei & Gu, Qinen & Chen, Jin, 2021. "From volatility spillover to risk spread: An empirical study focuses on renewable energy markets," Renewable Energy, Elsevier, vol. 180(C), pages 329-342.
    20. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    2. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    3. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    4. Suyi Kim, 2022. "The Effects of Information and Communication Technology, Economic Growth, Trade Openness, and Renewable Energy on CO 2 Emissions in OECD Countries," Energies, MDPI, vol. 15(7), pages 1-15, March.
    5. Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.
    7. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    8. Xiaocun Zhang & Qiwen Zhu & Xueqi Zhang, 2023. "Carbon Emission Intensity of Final Electricity Consumption: Assessment and Decomposition of Regional Power Grids in China from 2005 to 2020," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    9. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    10. Azam, Anam & Rafiq, Muhammad & Shafique, Muhammad & Zhang, Haonan & Yuan, Jiahai, 2021. "Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis," Energy, Elsevier, vol. 219(C).
    11. Anh The Vo & Duc Hong Vo & Quan Thai-Thuong Le, 2019. "CO 2 Emissions, Energy Consumption, and Economic Growth: New Evidence in the ASEAN Countries," JRFM, MDPI, vol. 12(3), pages 1-20, September.
    12. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    13. Goh, Tian & Ang, B.W. & Su, Bin & Wang, H., 2018. "Drivers of stagnating global carbon intensity of electricity and the way forward," Energy Policy, Elsevier, vol. 113(C), pages 149-156.
    14. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    15. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    16. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    17. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    18. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    19. Simplice A. Asongu & Chimere O. Iheonu & Kingsley O. Odo, 2019. "The Conditional Relationship between Renewable Energy and Environmental Quality in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 19/074, African Governance and Development Institute..
    20. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:317-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.