IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i9p4688-4703.html
   My bibliography  Save this article

Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan

Author

Listed:
  • Shimada, Koji
  • Tanaka, Yoshitaka
  • Gomi, Kei
  • Matsuoka, Yuzuru

Abstract

No abstract is available for this item.

Suggested Citation

  • Shimada, Koji & Tanaka, Yoshitaka & Gomi, Kei & Matsuoka, Yuzuru, 2007. "Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan," Energy Policy, Elsevier, vol. 35(9), pages 4688-4703, September.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:9:p:4688-4703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00148-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Treffers, D. J. & Faaij, A. P. C. & Spakman, J. & Seebregts, A., 2005. "Exploring the possibilities for setting up sustainable energy systems for the long term: two visions for the Dutch energy system in 2050," Energy Policy, Elsevier, vol. 33(13), pages 1723-1743, September.
    2. Johnston, D. & Lowe, R. & Bell, M., 2005. "An exploration of the technical feasibility of achieving CO2 emission reductions in excess of 60% within the UK housing stock by the year 2050," Energy Policy, Elsevier, vol. 33(13), pages 1643-1659, September.
    3. Kawase, Reina & Matsuoka, Yuzuru & Fujino, Junichi, 2006. "Decomposition analysis of CO2 emission in long-term climate stabilization scenarios," Energy Policy, Elsevier, vol. 34(15), pages 2113-2122, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poortinga, Wouter & Aoyagi, Midori & Pidgeon, Nick F., 2013. "Public perceptions of climate change and energy futures before and after the Fukushima accident: A comparison between Britain and Japan," Energy Policy, Elsevier, vol. 62(C), pages 1204-1211.
    2. Wang, Mingwei & Che, Yue & Yang, Kai & Wang, Min & Xiong, Lijun & Huang, Yuchi, 2011. "A local-scale low-carbon plan based on the STIRPAT model and the scenario method: The case of Minhang District, Shanghai, China," Energy Policy, Elsevier, vol. 39(11), pages 6981-6990.
    3. Liu, Shidong & Geng, Yuhuan & Zhang, Jianjun & Kang, Xiufen & Shi, Xuelian & Zhang, Jie, 2021. "Ecological trap in tourism-urbanization: Simulating the stagnation and restoration of urbanization from the perspective of government incentives," Ecological Economics, Elsevier, vol. 185(C).
    4. Wang, Mei & Xu, Mi & Ma, Shaojun, 2021. "The effect of the spatial heterogeneity of human capital structure on regional green total factor productivity," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 427-441.
    5. Pelaez-Samaniego, Manuel Raul & Riveros-Godoy, Gustavo & Torres-Contreras, Santiago & Garcia-Perez, Tsai & Albornoz-Vintimilla, Esteban, 2014. "Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy," Energy, Elsevier, vol. 64(C), pages 626-631.
    6. Huang, Jingchang & Cao, June & Hasan, Tahseen & Zhao, Jing, 2021. "Low-carbon city initiatives and firm risk: A quasi-natural experiment in China," Journal of Financial Stability, Elsevier, vol. 57(C).
    7. Lyu, Peng-hui & Ngai, Eric W.T. & Wu, Pei-yi, 2019. "Scientific data-driven evaluation on academic articles of low-carbon economy," Energy Policy, Elsevier, vol. 125(C), pages 358-367.
    8. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    9. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    10. Hao, Yu & Zhang, Zong-Yong & Yang, Chuxiao & Wu, Haitao, 2021. "Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    11. Yin, Hongying & Qian, Yuting & Zhang, Bin & Pérez, Rebeca, 2023. "Urban construction and firm green innovation: Evidence from China's low-carbon pilot city initiative," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    12. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    13. Phdungsilp, Aumnad & Wuttipornpun, Teeradej, 2013. "Analyses of the decarbonizing Thailand's energy system toward low-carbon futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 187-197.
    14. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siller, Thomas & Kost, Michael & Imboden, Dieter, 2007. "Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector," Energy Policy, Elsevier, vol. 35(1), pages 529-539, January.
    2. Saikku, Laura & Rautiainen, Aapo & Kauppi, Pekka E., 2008. "The sustainability challenge of meeting carbon dioxide targets in Europe by 2020," Energy Policy, Elsevier, vol. 36(2), pages 730-742, February.
    3. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    4. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    5. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    6. Natarajan, Sukumar & Levermore, Geoffrey J., 2007. "Predicting future UK housing stock and carbon emissions," Energy Policy, Elsevier, vol. 35(11), pages 5719-5727, November.
    7. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    8. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    9. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    10. Koji Tokimatsu & Shinsuke Murakami & Tsuyoshi Adachi & Ryota Ii & Rieko Yasuoka & Masahiro Nishio, 2017. "Long-term demand and supply of non-ferrous mineral resources by a mineral balance model," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(3), pages 193-206, October.
    11. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    12. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
    13. Nayeem Rahman & Rodrigo Rabetino & Arto Rajala & Jukka Partanen, 2021. "Ushering in a New Dawn: Demand-Side Local Flexibility Platform Governance and Design in the Finnish Energy Markets," Energies, MDPI, vol. 14(15), pages 1-23, July.
    14. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    15. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    16. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).
    17. Power, Anne, 2008. "Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability?," Energy Policy, Elsevier, vol. 36(12), pages 4487-4501, December.
    18. Hughes, Nick & Strachan, Neil & Gross, Robert, 2013. "The structure of uncertainty in future low carbon pathways," Energy Policy, Elsevier, vol. 52(C), pages 45-54.
    19. Natarajan, Sukumar & Levermore, Geoffrey J., 2007. "Domestic futures--Which way to a low-carbon housing stock?," Energy Policy, Elsevier, vol. 35(11), pages 5728-5736, November.
    20. Linghao Meng & Jusen Asuka, 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector," Sustainability, MDPI, vol. 14(9), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:9:p:4688-4703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.