IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v140y2020ics0301421520301336.html
   My bibliography  Save this article

Do renewable portfolio standards in the United States stunt renewable electricity development beyond mandatory targets?

Author

Listed:
  • Zhou, Shan
  • Solomon, Barry D.

Abstract

Building upon the literatures of policy stringency, policy effectiveness and clean technological change, this paper explores the question of whether the renewable portfolio standard (RPS) serves as a floor or a cap on renewable electricity capacity deployment in the U.S. In particular, we examine the effect of RPS policy stringency on renewable electricity capacity additions beyond compliance. A panel dataset from 1998 to 2017 is constructed for 28 states that have adopted a mandatory RPS in this timeframe. Using hybrid random effects negative binomial regression models, we find that when constrained by renewable electricity potential capacity (potential capacity < 403.4 GW), more stringent RPSs are significantly associated with a lower level of non-RPS related renewable electricity capacity additions. This negative effect of the RPS on beyond RPS compliance renewable electricity development is weakened by the abundance of renewable energy resources. For states endowed with large renewable energy resources, a stringent RPS policy can motivate utilities and other energy producers to invest in renewable electricity capacity beyond the mandatory target. These findings contribute to the policy stringency and policy effectiveness literatures, and improve our understanding of the relationship between clean energy technology adoption and energy policy.

Suggested Citation

  • Zhou, Shan & Solomon, Barry D., 2020. "Do renewable portfolio standards in the United States stunt renewable electricity development beyond mandatory targets?," Energy Policy, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301336
    DOI: 10.1016/j.enpol.2020.111377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520301336
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbose, Galen & Wiser, Ryan & Heeter, Jenny & Mai, Trieu & Bird, Lori & Bolinger, Mark & Carpenter, Alberta & Heath, Garvin & Keyser, David & Macknick, Jordan & Mills, Andrew & Millstein, Dev, 2016. "A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards," Energy Policy, Elsevier, vol. 96(C), pages 645-660.
    2. Shan Zhou & Daniel C. Matisoff, 2016. "Advanced Metering Infrastructure Deployment in the United States: The Impact of Polycentric Governance and Contextual Changes," Review of Policy Research, Policy Studies Organization, vol. 33(6), pages 646-665, November.
    3. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    4. Johnson, Erik Paul, 2014. "The cost of carbon dioxide abatement from state renewable portfolio standards," Resource and Energy Economics, Elsevier, vol. 36(2), pages 332-350.
    5. Carley, Sanya & Nicholson-Crotty, Sean & Miller, Chris J., 2017. "Adoption, reinvention and amendment of renewable portfolio standards in the American states," Journal of Public Policy, Cambridge University Press, vol. 37(4), pages 431-458, December.
    6. Yi, Hongtao, 2015. "Clean-energy policies and electricity sector carbon emissions in the U.S. states," Utilities Policy, Elsevier, vol. 34(C), pages 19-29.
    7. Gireesh Shrimali, Gabriel Chan, Steffen Jenner, Felix Groba and Joe Indvik, 2015. "Evaluating Renewable Portfolio Standards for In-State Renewable Deployment: Accounting for Policy Heterogeneity," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    8. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    9. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    10. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    11. Joskow, Paul L., 2005. "Transmission policy in the United States," Utilities Policy, Elsevier, vol. 13(2), pages 95-115, June.
    12. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    13. Cory, Karlynn S. & Swezey, Blair G., 2007. "Renewable Portfolio Standards in the States: Balancing Goals and Rules," The Electricity Journal, Elsevier, vol. 20(4), pages 21-32, May.
    14. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    15. A. Colin Cameron & Pravin K. Trivedi, 1986. "Econometric models based on count data. Comparisons and applications of some estimators and tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    16. James W. Stoutenborough & Matthew Beverlin, 2008. "Encouraging Pollution‐Free Energy: The Diffusion of State Net Metering Policies," Social Science Quarterly, Southwestern Social Science Association, vol. 89(5), pages 1230-1251, December.
    17. Buckman, Greg, 2011. "The effectiveness of Renewable Portfolio Standard banding and carve-outs in supporting high-cost types of renewable electricity," Energy Policy, Elsevier, vol. 39(7), pages 4105-4114, July.
    18. Reinhard Schunck, 2013. "Within and between estimates in random-effects models: Advantages and drawbacks of correlated random effects and hybrid models," Stata Journal, StataCorp LP, vol. 13(1), pages 65-76, March.
    19. Berry, Trent & Jaccard, Mark, 2001. "The renewable portfolio standard:: design considerations and an implementation survey," Energy Policy, Elsevier, vol. 29(4), pages 263-277, March.
    20. Magali Delmas & Michael V. Russo & Maria J. Montes‐Sancho, 2007. "Deregulation and environmental differentiation in the electric utility industry," Strategic Management Journal, Wiley Blackwell, vol. 28(2), pages 189-209, February.
    21. Constant I. Tra, 2016. "Have Renewable Portfolio Standards Raised Electricity Rates? Evidence From U.S. Electric Utilities," Contemporary Economic Policy, Western Economic Association International, vol. 34(1), pages 184-189, January.
    22. Yi, Hongtao, 2013. "Clean energy policies and green jobs: An evaluation of green jobs in U.S. metropolitan areas," Energy Policy, Elsevier, vol. 56(C), pages 644-652.
    23. Daniel C. Matisoff, 2008. "The Adoption of State Climate Change Policies and Renewable Portfolio Standards: Regional Diffusion or Internal Determinants?," Review of Policy Research, Policy Studies Organization, vol. 25(6), pages 527-546, December.
    24. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    25. Delmas, Magali A. & Montes-Sancho, Maria J., 2011. "U.S. state policies for renewable energy: Context and effectiveness," Energy Policy, Elsevier, vol. 39(5), pages 2273-2288, May.
    26. Chandler, Jess, 2009. "Trendy solutions: Why do states adopt Sustainable Energy Portfolio Standards?," Energy Policy, Elsevier, vol. 37(8), pages 3274-3281, August.
    27. Choi, Gobong & Huh, Sung-Yoon & Heo, Eunnyeong & Lee, Chul-Yong, 2018. "Prices versus quantities: Comparing economic efficiency of feed-in tariff and renewable portfolio standard in promoting renewable electricity generation," Energy Policy, Elsevier, vol. 113(C), pages 239-248.
    28. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    29. Barradale, Merrill Jones, 2010. "Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit," Energy Policy, Elsevier, vol. 38(12), pages 7698-7709, December.
    30. Barbose, Galen & Bird, Lori & Heeter, Jenny & Flores-Espino, Francisco & Wiser, Ryan, 2015. "Costs and benefits of renewables portfolio standards in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 523-533.
    31. Heeter, Jenny & Bird, Lori, 2013. "Including alternative resources in state renewable portfolio standards: Current design and implementation experience," Energy Policy, Elsevier, vol. 61(C), pages 1388-1399.
    32. Sarzynski, Andrea & Larrieu, Jeremy & Shrimali, Gireesh, 2012. "The impact of state financial incentives on market deployment of solar technology," Energy Policy, Elsevier, vol. 46(C), pages 550-557.
    33. Upton, Gregory B. & Snyder, Brian F., 2017. "Funding renewable energy: An analysis of renewable portfolio standards," Energy Economics, Elsevier, vol. 66(C), pages 205-216.
    34. Liang Ma, 2017. "Political ideology, social capital, and government innovativeness: evidence from the US states," Public Management Review, Taylor & Francis Journals, vol. 19(2), pages 114-133, February.
    35. Nikolay Anguelov & William F. Dooley, 2019. "Renewable Portfolio Standards and Policy Stringency: An Assessment of Implementation and Outcomes," Review of Policy Research, Policy Studies Organization, vol. 36(2), pages 195-216, March.
    36. Bell, Andrew & Jones, Kelvyn, 2015. "Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data," Political Science Research and Methods, Cambridge University Press, vol. 3(1), pages 133-153, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying, Zhou & Xin-gang, Zhao & Zhen, Wang, 2020. "Demand side incentive under renewable portfolio standards: A system dynamics analysis," Energy Policy, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301336. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.