IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp8-23.html
   My bibliography  Save this article

Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model

Author

Listed:
  • Liu, Dunnan
  • Xiao, Bowen

Abstract

Recently, the energy scarcity and environmental pollution have greatly promoted rapid development of the electric vehicles (EV) industry. In this context, we established a scenario analysis using system dynamics model to analyze the development of EV in China under policy incentives. Four scenarios were set in this paper: scenario 1 (Without any policy), scenario 2 (Only direct policy), scenario 3 (Only indirect policy), scenario 4 (Both direct & indirect policy). It is shown that the EV industry was in preliminary stage in 2010. After a period of development, in 2040, the total amount of EVs will reach 4.03, 8.61, 4.2 and 8.85 million in scenario 1–4. The results indicate that China's EV market penetration is mainly dominated by state policies, especially the financial supports. Reducing the governments’ financial supports for EVs will put EV manufacturers at a cost disadvantage in the automobile markets. In addition, because of our emerging carbon market and low average carbon price, participating in carbon trading market cannot promote a rapid growth by stimulating investment passion. In all, cutting the financial supports is not a good option, because the large-scale market penetration still requires the clear and strong policy incentives.

Suggested Citation

  • Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:8-23
    DOI: 10.1016/j.enpol.2018.04.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518302878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.04.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Y.X. & Jiao, J. & Chen, R.J. & Shu, H., 2018. "The optimization of Chinese power grid investment based on transmission and distribution tariff policy: A system dynamics approach," Energy Policy, Elsevier, vol. 113(C), pages 112-122.
    2. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    3. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    4. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    5. Zhang, Xiang & Bai, Xue, 2017. "Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 24-43.
    6. Gao, Wei & Hong, Bongghi & Swaney, Dennis P. & Howarth, Robert W. & Guo, Huaicheng, 2016. "A system dynamics model for managing regional N inputs from human activities," Ecological Modelling, Elsevier, vol. 322(C), pages 82-91.
    7. Taefi, Tessa T. & Kreutzfeldt, Jochen & Held, Tobias & Fink, Andreas, 2016. "Supporting the adoption of electric vehicles in urban road freight transport – A multi-criteria analysis of policy measures in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 61-79.
    8. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    9. Liang, Qiao-Mei & Wei, Yi-Ming, 2012. "Distributional impacts of taxing carbon in China: Results from the CEEPA model," Applied Energy, Elsevier, vol. 92(C), pages 545-551.
    10. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    11. Yan Zhou & Michael Wang & Han Hao & Larry Johnson & Hewu Wang & Han Hao, 2015. "Plug-in electric vehicle market penetration and incentives: a global review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 777-795, June.
    12. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    13. Timma, Lelde & Bazbauers, Gatis & Bariss, Uldis & Blumberga, Andra & Blumberga, Dagnija, 2017. "Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households," Energy Policy, Elsevier, vol. 109(C), pages 545-554.
    14. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    15. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    16. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    17. Guo, Xiaopeng & Guo, Xiaodan, 2016. "Nuclear power development in China after the restart of new nuclear construction and approval: A system dynamics analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 999-1007.
    18. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    19. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    20. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    21. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    22. Kumar, M. Satyendra & Revankar, Shripad T., 2017. "Development scheme and key technology of an electric vehicle: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1266-1285.
    23. Ahman, Max, 2006. "Government policy and the development of electric vehicles in Japan," Energy Policy, Elsevier, vol. 34(4), pages 433-443, March.
    24. Lin, Boqiang & Tan, Ruipeng, 2017. "Estimation of the environmental values of electric vehicles in Chinese cities," Energy Policy, Elsevier, vol. 104(C), pages 221-229.
    25. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    26. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    27. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    28. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    29. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    30. Silvia, Chris & Krause, Rachel M., 2016. "Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model," Energy Policy, Elsevier, vol. 96(C), pages 105-118.
    31. Zhou, Guanghui & Ou, Xunmin & Zhang, Xiliang, 2013. "Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions," Energy Policy, Elsevier, vol. 59(C), pages 875-884.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    2. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    3. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    4. Zhuge, Chengxiang & Wei, Binru & Shao, Chunfu & Shan, Yuli & Dong, Chunjiao, 2020. "The role of the license plate lottery policy in the adoption of Electric Vehicles: A case study of Beijing," Energy Policy, Elsevier, vol. 139(C).
    5. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    6. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2018. "Impacts of a super credit policy on electric vehicle penetration and compliance with China's Corporate Average Fuel Consumption regulation," Energy, Elsevier, vol. 155(C), pages 746-762.
    7. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    8. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    9. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    10. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    11. Zhang, Junjie & Jia, Rongwen & Yang, Hangjun & Dong, Kangyin, 2022. "Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?," Transport Policy, Elsevier, vol. 125(C), pages 151-163.
    12. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    13. Na Zhou & Qiaosheng Wu & Xiangping Hu, 2020. "Research on the Policy Evolution of China’s New Energy Vehicles Industry," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    14. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    15. Mo Chen & Rudy X. J. Liu & Chaochao Liu, 2021. "How to Improve the Market Penetration of New Energy Vehicles in China: An Agent-Based Model with a Three-Level Variables Structure," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    16. Zheng, Xuemei & Menezes, Flavio & Zheng, Xiaofeng & Wu, Chengkuan, 2022. "An empirical assessment of the impact of subsidies on EV adoption in China: A difference-in-differences approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 121-136.
    17. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    18. Baodi Zhang & Fuyuan Yang & Lan Teng & Minggao Ouyang & Kunfang Guo & Weifeng Li & Jiuyu Du, 2019. "Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US," Energies, MDPI, vol. 12(19), pages 1-23, September.
    19. He, Yongxiu & Zhang, Qi & Pang, Yuexia, 2017. "The development pattern design of Chinese electric vehicles based on the analysis of the critical price of the life cycle cost," Energy Policy, Elsevier, vol. 109(C), pages 382-388.
    20. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:8-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.