IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12307-d674268.html
   My bibliography  Save this article

How to Improve the Market Penetration of New Energy Vehicles in China: An Agent-Based Model with a Three-Level Variables Structure

Author

Listed:
  • Mo Chen

    (School of Management, Tianjin University of Commerce, Tianjin 300134, China)

  • Rudy X. J. Liu

    (School of Management, Tianjin University of Commerce, Tianjin 300134, China
    Research Center for Management Innovation and Evaluation, Tianjin University of Commerce, Tianjin 300134, China)

  • Chaochao Liu

    (School of Management, Tianjin University of Commerce, Tianjin 300134, China
    Research Center for Management Innovation and Evaluation, Tianjin University of Commerce, Tianjin 300134, China)

Abstract

This paper develops an agent-based model with linking variables (ABML) to investigate the influencing factors for the new energy vehicles (NEVs) market in China. The ABML is a framework with three-level variables including micro, linking, and macro variables, which can reduce the complexity of the simulation. The emergence from bottom to top occurs between linking and macro variables, while the best–worst scaling describes the mapping between micro and linking variables. In the case study, Rookie, Veteran, and New Generation consumers are assumed as the three types of consumers in China’s market. A specification of the three types of variables is presented, where the value of linking variables obeys uniform distribution. By introducing the population density and the interaction frequency, the number of agents is determined with an experiment. All parameters in the model are estimated by calibrating the realistic vehicle sales. We compare different scenarios and obtain some management insights for improving the market penetration of NEVs in China.

Suggested Citation

  • Mo Chen & Rudy X. J. Liu & Chaochao Liu, 2021. "How to Improve the Market Penetration of New Energy Vehicles in China: An Agent-Based Model with a Three-Level Variables Structure," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12307-:d:674268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    2. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    3. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    4. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    5. Zhang, Jing & Reed Johnson, F. & Mohamed, Ateesha F. & Hauber, A. Brett, 2015. "Too many attributes: A test of the validity of combining discrete-choice and best–worst scaling data," Journal of choice modelling, Elsevier, vol. 15(C), pages 1-13.
    6. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
    7. Giacomarra, Marcella & Tulone, Antonio & Crescimanno, Maria & Galati, Antonino, 2019. "Electric mobility in the Sicilian short food supply chain," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 121(2), August.
    8. Wang, Lei & Fu, Zhong-Lin & Guo, Wei & Liang, Ruo-Yu & Shao, Hong-Yu, 2020. "What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers’ purchase reasons," Energy Policy, Elsevier, vol. 142(C).
    9. Noori, Mehdi & Tatari, Omer, 2016. "Development of an agent-based model for regional market penetration projections of electric vehicles in the United States," Energy, Elsevier, vol. 96(C), pages 215-230.
    10. Shafiei, Ehsan & Thorkelsson, Hedinn & Ásgeirsson, Eyjólfur Ingi & Davidsdottir, Brynhildur & Raberto, Marco & Stefansson, Hlynur, 2012. "An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1638-1653.
    11. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    12. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    13. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    14. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    15. Silvia, Chris & Krause, Rachel M., 2016. "Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model," Energy Policy, Elsevier, vol. 96(C), pages 105-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuge, Chengxiang & Wei, Binru & Shao, Chunfu & Shan, Yuli & Dong, Chunjiao, 2020. "The role of the license plate lottery policy in the adoption of Electric Vehicles: A case study of Beijing," Energy Policy, Elsevier, vol. 139(C).
    2. Azadeh Ahkamiraad & Yong Wang, 2018. "An Agent-Based Model for Zip-Code Level Diffusion of Electric Vehicles and Electricity Consumption in New York City," Energies, MDPI, vol. 11(3), pages 1-17, March.
    3. Tobias Buchmann & Patrick Wolf & Stefan Fidaschek, 2021. "Stimulating E-Mobility Diffusion in Germany (EMOSIM): An Agent-Based Simulation Approach," Energies, MDPI, vol. 14(3), pages 1-25, January.
    4. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    5. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    6. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    8. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    9. Nugroho, Rizqi Ilma & Gnann, Till & Speth, Daniel & Purwanto, Widodo Wahyu & Hanafi, Jessica & Soehodho, Sutanto, 2024. "Agent-based simulation for market diffusion of passenger cars and motorcycles BEV in Greater Jakarta Area," Working Papers "Sustainability and Innovation" S05/2024, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Alderete Peralta, Ali & Balta-Ozkan, Nazmiye & Longhurst, Philip, 2022. "Spatio-temporal modelling of solar photovoltaic adoption: An integrated neural networks and agent-based modelling approach," Applied Energy, Elsevier, vol. 305(C).
    12. Liu, Junbei & Zhuge, Chengxiang & Tang, Justin Hayse Chiwing G. & Meng, Meng & Zhang, Jie, 2022. "A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing," Applied Energy, Elsevier, vol. 310(C).
    13. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    14. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    15. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    16. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    17. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    18. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    19. Zhu, Lijing & Wang, Jingzhou & Farnoosh, Arash & Pan, Xunzhang, 2022. "A game-theory analysis of electric vehicle adoption in Beijing under license plate control policy," Energy, Elsevier, vol. 244(PA).
    20. Xiao, Xu & Chen, Zi-Rui & Nie, Pu-Yan, 2020. "Analysis of two subsidies for EVs: Based on an expanded theoretical discrete-choice model," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12307-:d:674268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.