IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v322y2016icp82-91.html
   My bibliography  Save this article

A system dynamics model for managing regional N inputs from human activities

Author

Listed:
  • Gao, Wei
  • Hong, Bongghi
  • Swaney, Dennis P.
  • Howarth, Robert W.
  • Guo, Huaicheng

Abstract

Human activities are the main drivers of alterations of regional N cycles. With increasing population and economic development, human-induced N inputs are expected to continue to increase in the future, especially in many regions of developing countries. Because N sources vary substantially at different temporal and spatial scales and stages of economic development, it is of great importance for environmental managers to be able to simulate the dynamics of N inputs to a specific region of interest. Based on the concept of net anthropogenic N inputs (NANI), a quasi-mass-balance method, a system dynamics model simulating regional N inputs (NANI-SD) is developed and presented here for the first time. The NANI-SD model evaluates how much new N from anthropogenic activities is introduced to the whole basin, providing a simple but effective way to examine human influences on regional N cycles. Our application of the NANI-SD model to the Lake Dianchi basin in China shows that human-induced N inputs will continue to increase under current trends of development. Scenarios focused on lowering population growth rate and banning crop production were not effective in achieving long-term reductions in N inputs because their impacts were compensated by the increases in croplands and food imports, respectively. However, adjusting diet patterns and limiting livestock numbers within the basin were shown to be highly effective in controlling regional N inputs without compromising environmental sustainability of food imported regions. There was a significant trade-off between N self-sufficiency and N inputs to the region, posing the issue of “pollution transfer” as the regions of livestock production providing animal products to the Lake Dianchi basin could suffer from locally intensified levels of N pollution introduced while producing those animal N products. The positive relationship between NANI and the proportion of animal-based protein in food indicates that reducing meat consumption could be an effective way of controlling local N inputs without sacrificing food sovereignty. NANI to the basin could also be reduced by recycling N in human and livestock wastes, but its capacity to reduce NANI is limited and projected to diminish with time.

Suggested Citation

  • Gao, Wei & Hong, Bongghi & Swaney, Dennis P. & Howarth, Robert W. & Guo, Huaicheng, 2016. "A system dynamics model for managing regional N inputs from human activities," Ecological Modelling, Elsevier, vol. 322(C), pages 82-91.
  • Handle: RePEc:eee:ecomod:v:322:y:2016:i:c:p:82-91
    DOI: 10.1016/j.ecolmodel.2015.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015005529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    3. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqian Zhu & Fengming Liu, 2017. "Research on Behavior Model of Rumor Maker Based on System Dynamics," Complexity, Hindawi, vol. 2017, pages 1-9, June.
    2. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    3. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    2. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    3. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    4. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    5. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    6. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    7. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    8. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    9. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    10. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    11. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    12. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    14. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    15. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    16. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    17. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    18. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    19. Janet Judy McIntyre‐Mills, 2013. "Anthropocentrism and Well‐being: A Way Out of the Lobster Pot?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 136-155, March.
    20. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:322:y:2016:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.