IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v118y2018icp279-290.html
   My bibliography  Save this article

Evaluation of the U.S. department of energy’s weatherization assistance program: Impact results

Author

Listed:
  • Tonn, B.
  • Rose, E.
  • Hawkins, B.

Abstract

This paper presents the results of two impact evaluations of the U.S. Department of Energy's Weatherization Assistance Program (WAP). This comprehensive weatherization program provides grants to U.S. states, which then provide grants to local weatherization agencies to weatherize income-eligible low-income homes. The program treats single family and mobile homes, and multifamily buildings in all climate zones. The impact evaluations focused on Program Years (PYs) 2008 and 2010. The latter fell during the American Recovery and Reinvestment Act (ARRA) period. The program supported the weatherization of 98,000 units in PY 2008 and 332,000 units in PY 2010. It is estimated that the program saved 2.3 trillion Btus in PY 2008 and 7.6 trillion Btus in PY 2010. These savings achieve $420 million in energy cost savings with respect to PY 2008 and $1.2 billion in savings in PY 2010. Environmental and health and household related benefits add $267 million and $1.2 billion and $694 million and $3.8 billion of co-benefits to the energy cost savings benefits. The average total benefit per unit weatherized in PY 2008 is $22,000 versus an average total cost of $4,700. These results for PY 2010 are $20,000 and $6,800, respectively.

Suggested Citation

  • Tonn, B. & Rose, E. & Hawkins, B., 2018. "Evaluation of the U.S. department of energy’s weatherization assistance program: Impact results," Energy Policy, Elsevier, vol. 118(C), pages 279-290.
  • Handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:279-290
    DOI: 10.1016/j.enpol.2018.03.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518301836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.03.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernández, D., 2013. "Energy insecurity: a framework for understanding energy, the built environment, and health among vulnerable populations in the context of climate change," American Journal of Public Health, American Public Health Association, vol. 103(4), pages 32-34.
    2. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    3. Liddell, Christine & Morris, Chris, 2010. "Fuel poverty and human health: A review of recent evidence," Energy Policy, Elsevier, vol. 38(6), pages 2987-2997, June.
    4. Hernández, D., 2013. "Energy insecurity: A framework for understanding energy, the built environment, and health among vulnerable populations in the context of climate change," American Journal of Public Health, American Public Health Association, vol. 103(4), pages 32-34.
    5. Gilbertson, Jan & Grimsley, Michael & Green, Geoff, 2012. "Psychosocial routes from housing investment to health: Evidence from England's home energy efficiency scheme," Energy Policy, Elsevier, vol. 49(C), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carley, Sanya & Engle, Caroline & Konisky, David M., 2021. "An analysis of energy justice programs across the United States," Energy Policy, Elsevier, vol. 152(C).
    2. Semple, Sally & Jenkins, David, 2020. "Variation of energy performance certificate assessments in the European Union," Energy Policy, Elsevier, vol. 137(C).
    3. Tian, Zhirui & Wang, Jiyang, 2022. "Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm," Energy, Elsevier, vol. 254(PA).
    4. Lim, Taekyoung & Guzman, Tatyana S. & Bowen, William M., 2020. "Rhetoric and Reality: Jobs and the Energy Provisions of the American Recovery and Reinvestment Act," Energy Policy, Elsevier, vol. 137(C).
    5. Baik, Sosung & Hines, Jeffrey F. & Sim, Jaeung, 2023. "Racial disparities in the energy burden beyond socio-economic inequality," Energy Economics, Elsevier, vol. 127(PA).
    6. Helmke-Long, Laura & Carley, Sanya & Konisky, David M., 2022. "Municipal government adaptive capacity programs for vulnerable populations during the U.S. energy transition," Energy Policy, Elsevier, vol. 167(C).
    7. Hondeborg, Dianne & Probst, Benedict & Petkov, Ivalin & Knoeri, Christof, 2023. "The effectiveness of building retrofits under a subsidy scheme: Empirical evidence from Switzerland," Energy Policy, Elsevier, vol. 180(C).
    8. Pereira, Diogo Santos & Marques, António Cardoso, 2023. "Are dynamic tariffs effective in reducing energy poverty? Empirical evidence from US households," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioanna Kyprianou & Despina Serghides & Harriet Thomson & Salvatore Carlucci, 2023. "Learning from the Past: The Impacts of Economic Crises on Energy Poverty Mortality and Rural Vulnerability," Energies, MDPI, vol. 16(13), pages 1-13, July.
    2. Burlinson, Andrew & Giulietti, Monica & Law, Cherry & Liu, Hui-Hsuan, 2021. "Fuel poverty and financial distress," Energy Economics, Elsevier, vol. 102(C).
    3. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    4. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    5. Davillas, Apostolos & Burlinson, Andrew & Liu, Hui-Hsuan, 2022. "Getting warmer: Fuel poverty, objective and subjective health and well-being," Energy Economics, Elsevier, vol. 106(C).
    6. Adam Pollard & Tim Jones & Stephen Sherratt & Richard A. Sharpe, 2019. "Use of Simple Telemetry to Reduce the Health Impacts of Fuel Poverty and Living in Cold Homes," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    7. Harriet Thomson & Carolyn Snell & Stefan Bouzarovski, 2017. "Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries," IJERPH, MDPI, vol. 14(6), pages 1-20, May.
    8. Ürge-Vorsatz, Diana & Tirado Herrero, Sergio, 2012. "Building synergies between climate change mitigation and energy poverty alleviation," Energy Policy, Elsevier, vol. 49(C), pages 83-90.
    9. Adom, Philip Kofi & Amuakwa-Mensah, Franklin & Agradi, Mawunyo Prosper & Nsabimana, Aimable, 2021. "Energy poverty, development outcomes, and transition to green energy," Renewable Energy, Elsevier, vol. 178(C), pages 1337-1352.
    10. Kearns, Ade & Whitley, Elise & Curl, Angela, 2019. "Occupant behaviour as a fourth driver of fuel poverty (aka warmth & energy deprivation)," Energy Policy, Elsevier, vol. 129(C), pages 1143-1155.
    11. Sovacool, Benjamin K., 2015. "Fuel poverty, affordability, and energy justice in England: Policy insights from the Warm Front Program," Energy, Elsevier, vol. 93(P1), pages 361-371.
    12. Li, Yunwei & Ning, Xiao & Wang, Zijie & Cheng, Jingyu & Li, Fumeng & Hao, Yu, 2022. "Would energy poverty affect the wellbeing of senior citizens? Evidence from China," Ecological Economics, Elsevier, vol. 200(C).
    13. Boomsma, Christine & Pahl, Sabine & Jones, Rory V. & Fuertes, Alba, 2017. "“Damp in bathroom. Damp in back room. It's very depressing!” exploring the relationship between perceived housing problems, energy affordability concerns, and health and well-being in UK social housin," Energy Policy, Elsevier, vol. 106(C), pages 382-393.
    14. Recalde, Martina & Peralta, Andrés & Oliveras, Laura & Tirado-Herrero, Sergio & Borrell, Carme & Palència, Laia & Gotsens, Mercè & Artazcoz, Lucia & Marí-Dell’Olmo, Marc, 2019. "Structural energy poverty vulnerability and excess winter mortality in the European Union: Exploring the association between structural determinants and health," Energy Policy, Elsevier, vol. 133(C).
    15. O'Sullivan, Kimberley C. & Howden-Chapman, Philippa L. & Fougere, Geoffrey M. & Hales, Simon & Stanley, James, 2013. "Empowered? Examining self-disconnection in a postal survey of electricity prepayment meter consumers in New Zealand," Energy Policy, Elsevier, vol. 52(C), pages 277-287.
    16. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
    17. Maidment, Christopher D. & Jones, Christopher R. & Webb, Thomas L. & Hathway, E. Abigail & Gilbertson, Jan M., 2014. "The impact of household energy efficiency measures on health: A meta-analysis," Energy Policy, Elsevier, vol. 65(C), pages 583-593.
    18. Camprubí, Lluís & Malmusi, Davide & Mehdipanah, Roshanak & Palència, Laia & Molnar, Agnes & Muntaner, Carles & Borrell, Carme, 2016. "Façade insulation retrofitting policy implementation process and its effects on health equity determinants: A realist review," Energy Policy, Elsevier, vol. 91(C), pages 304-314.
    19. Willand, Nicola & Ridley, Ian & Maller, Cecily, 2015. "Towards explaining the health impacts of residential energy efficiency interventions – A realist review. Part 1: Pathways," Social Science & Medicine, Elsevier, vol. 133(C), pages 191-201.
    20. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:279-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.