IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v45y2014icp373-380.html
   My bibliography  Save this article

Implementing a load duration curve of electricity demand in a general equilibrium model

Author

Listed:
  • Wiskich, Anthony

Abstract

Top-down computable general equilibrium models of energy–economy interactions have a limited representation of the electricity sector, typically using constant elasticities of substitution between generation types. Detailed bottom-up electricity models generally have embedded load duration curves with the electricity price determined by the marginal cost of generation. This study incorporates a simple representation of electricity generation with these bottom-up features directly into the GTAP general equilibrium model.

Suggested Citation

  • Wiskich, Anthony, 2014. "Implementing a load duration curve of electricity demand in a general equilibrium model," Energy Economics, Elsevier, vol. 45(C), pages 373-380.
  • Handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:373-380
    DOI: 10.1016/j.eneco.2014.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    2. Jean-Marc Burniaux & Jean Château, 2008. "An Overview of the OECD ENV-Linkages Model," OECD Economics Department Working Papers 653, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    2. Henrik Braconier & Giuseppe Nicoletti & Ben Westmore, 2015. "Policy challenges for the next 50 years," OECD Journal: Economic Studies, OECD Publishing, vol. 2015(1), pages 9-66.
    3. Jean-Marc Burniaux & Joaquim Oliveira Martins, 2016. "Carbon Leakages: A General Equilibrium View," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 341-363, Springer.
    4. Lionel Fontagné & Jean Fouré, 2021. "Calibrating Long-Term Trade Baselines in General Equilibrium," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 4, pages 97-127, World Scientific Publishing Co. Pte. Ltd..
    5. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    6. Haakon Vennemo & Jianwu He & Shantong Li, 2014. "Macroeconomic Impacts of Carbon Capture and Storage in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(3), pages 455-477, November.
    7. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    8. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    9. Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
    10. Yvan Decreux & Lionel Fontagné, 2011. "Economic Impact of Potential Outcome of the DDA," Working Papers 2011-23, CEPII research center.
    11. Calvin, Katherine & Fawcett, Allen & Kejun, Jiang, 2012. "Comparing model results to national climate policy goals: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 306-315.
    12. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    13. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    14. Shiro Takeda & Toshi H. Arimura & Makoto Sugino, 2019. "Labor Market Distortions and Welfare-Decreasing International Emissions Trading," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 271-293, September.
    15. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    16. Akira Maeda, 2014. "Estimating the impact of emission reduction target-setting on the macroeconomy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(4), pages 381-395, October.
    17. Songyan Ren & Peng Wang & Hancheng Dai & Daiqing Zhao & Toshihiko Masui, 2021. "Health and Economic Impact Assessment of Transport and Industry PM 2.5 Control Policy in Guangdong Province," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    18. Wilkerson, Jordan T. & Leibowicz, Benjamin D. & Turner, Delavane D. & Weyant, John P., 2015. "Comparison of integrated assessment models: Carbon price impacts on U.S. energy," Energy Policy, Elsevier, vol. 76(C), pages 18-31.
    19. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    20. Lining Wang & Han Chen & Wenying Chen, 2020. "Co-control of carbon dioxide and air pollutant emissions in China from a cost-effective perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1177-1197, October.

    More about this item

    Keywords

    Computable general equilibrium; Electricity; Load duration curve;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:373-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.