IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2201-d120856.html
   My bibliography  Save this article

Risk Reduction Methods for Managing the Development of Regional Electric Power Industry

Author

Listed:
  • Mikhail Kozhevnikov

    (Department of Management Systems for Energy and Industrial Enterprises, Ural Federal University, Mira str., 19, 620002 Ekaterinburg, Russia)

  • Lazar Gitelman

    (Department of Management Systems for Energy and Industrial Enterprises, Ural Federal University, Mira str., 19, 620002 Ekaterinburg, Russia)

  • Elena Magaril

    (Department of Environmental Economics, Ural Federal University, Mira str., 19, 620002 Ekaterinburg, Russia)

  • Romen Magaril

    (Department of Oil and Gas Processing, Tyumen Industrial University, Volodarskogo str., 38, 625000 Tyumen, Russia)

  • Alexandra Aristova

    (Department of Environmental Economics, Ural Federal University, Mira str., 19, 620002 Ekaterinburg, Russia)

Abstract

The development of the regional electric power industry has come to the forefront due to the changing scale, quality, and configuration of electric power infrastructure, and the spread of distributed generation. This gives rise to more stringent requirements regarding the reliability, safety, and environmental impact of electric power supply. This article aims to justify a package of methods that make it possible to identify and minimize investment, production, financial, and environmental risks in order to ensure sustainable development of the regional electric power industry that performs anti-crisis functions, and of individual energy companies. The key method to be employed is integrated resource planning (IRP). As a part of the method, energy conservation, renewable energy sources, and combined heat and power production are considered as equally valid ways of meeting future demand. The authors have designed a methodology for taking into account uncertainty and risk when implementing IRP. The methodology includes analysis of scenarios and decision making processes by calculating past and projected values of profit indicators. When conducting the environmental and economic assessment of an investment project in the electric power industry, the authors suggest using an aggregate indicator of environmental and economic effectiveness that is calculated on the basis of a combination of locally significant positive and negative environmental and economic impacts of the project. The authors formulate conceptual provisions that serve as the foundation for a promising model of the regional electric power industry and which contain recommendations for managing the development of the industry while minimizing organizational, market, and technological risks.

Suggested Citation

  • Mikhail Kozhevnikov & Lazar Gitelman & Elena Magaril & Romen Magaril & Alexandra Aristova, 2017. "Risk Reduction Methods for Managing the Development of Regional Electric Power Industry," Sustainability, MDPI, vol. 9(12), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2201-:d:120856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rozita Singh & Xiao Wang & Juan Carlos Mendoza & Emmanuel Kofi Ackom, 2015. "Electricity (in)accessibility to the urban poor in developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(4), pages 339-353, July.
    2. Elizabeth Baldwin & Jennifer N. Brass & Sanya Carley & Lauren M. MacLean, 2015. "Electrification and rural development: issues of scale in distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 196-211, March.
    3. Leonid Gitelman & Boris Bokarev & Tatiana Gavrilova & Mikhail Kozhevnikov, 2015. "Anti-Crisis Solutions for Regional Energy Sector," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 173-188.
    4. Kern, Florian & Smith, Adrian, 2008. "Restructuring energy systems for sustainability? Energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 36(11), pages 4093-4103, November.
    5. Jonathan Ranisau & Mohammed Barbouti & Aaron Trainor & Nidhi Juthani & Yaser K. Salkuyeh & Azadeh Maroufmashat & Michael Fowler, 2017. "Power-to-Gas Implementation for a Polygeneration System in Southwestern Ontario," Sustainability, MDPI, vol. 9(9), pages 1-19, September.
    6. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    7. J. Birkmann & P. Buckle & J. Jaeger & M. Pelling & N. Setiadi & M. Garschagen & N. Fernando & J. Kropp, 2010. "Extreme events and disasters: a window of opportunity for change? Analysis of organizational, institutional and political changes, formal and informal responses after mega-disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(3), pages 637-655, December.
    8. Leonid Gitelman & Boris Ratnikov & Mikhail Kozhevnikov, 2013. "Demand-side management for energy in the region," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(2), pages 78-84.
    9. Daniel Scholten & Rolf Künneke, 2016. "Towards the Comprehensive Design of Energy Infrastructures," Sustainability, MDPI, vol. 8(12), pages 1-24, December.
    10. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    11. Shrestha, Ram M. & Marpaung, Charles O.P., 2006. "Integrated resource planning in the power sector and economy-wide changes in environmental emissions," Energy Policy, Elsevier, vol. 34(18), pages 3801-3811, December.
    12. Hu, Zhaoguang & Wen, Quan & Wang, Jianhui & Tan, Xiandong & Nezhad, Hameed & Shan, Baoguo & Han, Xinyang, 2010. "Integrated resource strategic planning in China," Energy Policy, Elsevier, vol. 38(8), pages 4635-4642, August.
    13. Vishnevskiy, Konstantin & Karasev, Oleg & Meissner, Dirk, 2016. "Integrated roadmaps for strategic management and planning," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 153-166.
    14. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gennadiy Stroykov & Alexey Y. Cherepovitsyn & Elizaveta A. Iamshchikova, 2020. "Powering Multiple Gas Condensate Wells in Russia’s Arctic: Power Supply Systems Based on Renewable Energy Sources," Resources, MDPI, vol. 9(11), pages 1-15, November.
    2. Lazar Gitelman & Mikhail Kozhevnikov & Yana Visotskaya, 2023. "Diversification as a Method of Ensuring the Sustainability of Energy Supply within the Energy Transition," Resources, MDPI, vol. 12(2), pages 1-19, February.
    3. А.P. Karaeva & E.R. Magaril, 2020. "Environmental Capacity Indicators as a Tool for Evaluation of Energy Projects Efficiency," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(2), pages 166-179.
    4. José Rafael Lopes & Salvador Ávila & Ricardo Kalid & Jorge Laureano Moya Rodríguez, 2018. "Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal," Energies, MDPI, vol. 11(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yanan & Hu, Zhaoguang & Wang, Jianhui & Wen, Quan, 2014. "IRSP (integrated resource strategic planning) with interconnected smart grids in integrating renewable energy and implementing DSM (demand side management) in China," Energy, Elsevier, vol. 76(C), pages 863-874.
    2. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    3. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    4. Spaniol, Matthew J. & Rowland, Nicholas J., 2022. "Business ecosystems and the view from the future: The use of corporate foresight by stakeholders of the Ro-Ro shipping ecosystem in the Baltic Sea Region," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    5. Marwa Hannouf & Getachew Assefa, 2018. "A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    6. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    7. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    8. Rebecca Page & Lisa Dilling, 2020. "How experiences of climate extremes motivate adaptation among water managers," Climatic Change, Springer, vol. 161(3), pages 499-516, August.
    9. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    10. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    11. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    12. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    13. Bimal Kanti Paul & Munshi Khaledur Rahman & Max Lu & Thomas W. Crawford, 2022. "Household Migration and Intentions for Future Migration in the Climate Change Vulnerable Lower Meghna Estuary of Coastal Bangladesh," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    14. Leonid Gitelman & Mikhail Kozhevnikov, 2017. "Electrification as a Development Driver for “Smart Citiesâ€," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 1199-1210.
    15. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    16. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    17. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    18. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    19. Francesco Tonini & Francesco Davide Sanvito & Fabrizio Colombelli & Emanuela Colombo, 2022. "Improving Sustainable Access to Electricity in Rural Tanzania: A System Dynamics Approach to the Matembwe Village," Energies, MDPI, vol. 15(5), pages 1-17, March.
    20. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2201-:d:120856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.