IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v142y2025ics0140988324008119.html
   My bibliography  Save this article

Risk factors in the formulation of day-ahead electricity prices: Evidence from the Spanish case

Author

Listed:
  • Paschalidou, Eleftheria G.
  • Thomaidis, Nikolaos S.

Abstract

This study investigates the dynamic connection between Spanish day-ahead electricity prices and various fundamental determinants, including average surface temperature, forecasted electricity demand, predicted renewable energy injection, natural gas futures prices and CO2 emission rights cost. Structural Dynamic Factor Models (SDFM) are employed to decompose each hourly price signal into systematic components linked to any of the fundamental indices mentioned above and unveil structural shocks moving the entire panel of variables. Empirical results indicate that Spanish day-ahead electricity prices have a strong fundamental basis; a great deal of their observed short- or long-run variations are explained by changes in temperature, load, renewable energy supply, natural gas and carbon permit cost.

Suggested Citation

  • Paschalidou, Eleftheria G. & Thomaidis, Nikolaos S., 2025. "Risk factors in the formulation of day-ahead electricity prices: Evidence from the Spanish case," Energy Economics, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:eneeco:v:142:y:2025:i:c:s0140988324008119
    DOI: 10.1016/j.eneco.2024.108102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324008119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.108102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Han & Mehmet Caner, 2017. "Determining the number of factors with potentially strong within-block correlations in error terms," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 946-969, October.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Mount, Timothy D. & Ning, Yumei & Cai, Xiaobin, 2006. "Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters," Energy Economics, Elsevier, vol. 28(1), pages 62-80, January.
    4. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    5. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    6. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    7. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    8. Nikolaos S. Thomaidis & Gordon H. Dash & Nina Kajiji, 2019. "Common Unobserved Determinants of Intraday Electricity Prices," The Energy Journal, , vol. 40(1_suppl), pages 211-232, June.
    9. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    10. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    11. Michail I. Seitaridis & Nikolaos S. Thomaidis & Pandelis N. Biskas, 2021. "Fundamental Responsiveness in European Electricity Prices," Energies, MDPI, vol. 14(22), pages 1-14, November.
    12. Huisman, Ronald, 2008. "The influence of temperature on spike probability in day-ahead power prices," Energy Economics, Elsevier, vol. 30(5), pages 2697-2704, September.
    13. Nikolaos S. Thomaidis & Gordon H. Dash & Nina Kajiji, 2019. "Common Unobserved Determinants of Intraday Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    14. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    15. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    16. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    17. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    18. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    19. Jushan Bai & Peng Wang, 2015. "Identification and Bayesian Estimation of Dynamic Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 221-240, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    3. Joanna Janczura, 2012. "Pricing electricity derivatives within a Markov regime-switching model," Papers 1203.5442, arXiv.org.
    4. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    5. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    6. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    8. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    9. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    10. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    11. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    12. Zarnikau, J. & Tsai, C.H. & Woo, C.K., 2020. "Determinants of the wholesale prices of energy and ancillary services in the U.S. Midcontinent electricity market," Energy, Elsevier, vol. 195(C).
    13. Chi-Keung Woo & Ira Horowitz & Jay Zarnikau & Jack Moore & Brendan Schneiderman & Tony Ho & Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, , vol. 37(3), pages 29-57, July.
    14. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    15. Zarnikau, J. & Woo, C.K. & Zhu, S. & Tsai, C.H., 2019. "Market price behavior of wholesale electricity products: Texas," Energy Policy, Elsevier, vol. 125(C), pages 418-428.
    16. Gerster, Andreas, 2016. "Negative price spikes at power markets: The role of energy policy," Ruhr Economic Papers 636, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    18. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.
    19. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    20. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.

    More about this item

    Keywords

    Day-ahead electricity market; Fundamental analysis; Structural dynamic factor models; Multi-level factor models;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:142:y:2025:i:c:s0140988324008119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.