IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v80y2025ics0927539824001099.html
   My bibliography  Save this article

Forecasting realized betas using predictors indicating structural breaks and asymmetric risk effects

Author

Listed:
  • Luo, Jiawen
  • Chen, Zhenbiao
  • Cheng, Mingmian

Abstract

This paper studies the importance of structural breaks and asymmetric risk effects for accurate forecasts of the realized beta. Specifically, structural breaks in the realized beta are detected by Iterated Cumulative Sum of Square (ICSS) algorithm and asymmetric risk effects are captured by decomposing the realized beta further into various components following Ang et al. (2006) and Bollerslev et al. (2021). We propose a set of Heterogeneous Autoregressive (HAR) model variants by incorporating these new predictors. To achieve model parsimony and to keep only the predictors with significant power, we employ Least Absolute Shrinkage and Selection Operator (LASSO) method for variable selection. Our proposed LASSOHAR model with estimators of structural breaks and asymmetric risk effects is found to yield more accurate out-of-sample beta forecasts than a variety of alternative models in terms of both statistical and economic criteria. In particular, our model successfully achieves the long-memory feature of realized betas in a tractable and parsimonious way. These empirical findings are robust across different data sampling frequencies, different estimation windows, different sub-samples, different quantiles of the beta distribution and different industrial sectors.

Suggested Citation

  • Luo, Jiawen & Chen, Zhenbiao & Cheng, Mingmian, 2025. "Forecasting realized betas using predictors indicating structural breaks and asymmetric risk effects," Journal of Empirical Finance, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:empfin:v:80:y:2025:i:c:s0927539824001099
    DOI: 10.1016/j.jempfin.2024.101575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539824001099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2024.101575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    2. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    4. Andrew J. Patton & Michela Verardo, 2012. "Does Beta Move with News? Firm-Specific Information Flows and Learning about Profitability," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2789-2839.
    5. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    6. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    7. Ziel, Florian & Liu, Bidong, 2016. "Lasso estimation for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1029-1037.
    8. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    9. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Ginger Wu, 2006. "Realized Beta: Persistence and Predictability," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 1-39, Emerald Group Publishing Limited.
    11. Yaron Levi & Ivo Welch & Andrew Karolyi, 2020. "Symmetric and Asymmetric Market Betas and Downside Risk," The Review of Financial Studies, Society for Financial Studies, vol. 33(6), pages 2772-2795.
    12. Jonathan J. Reeves & Haifeng Wu, 2013. "Constant versus Time‐Varying Beta Models: Further Forecast Evaluation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 256-266, April.
    13. Lettau, Martin & Maggiori, Matteo & Weber, Michael, 2014. "Conditional risk premia in currency markets and other asset classes," Journal of Financial Economics, Elsevier, vol. 114(2), pages 197-225.
    14. Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications," Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
    15. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    16. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    17. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    18. Tofallis, Chris, 2008. "Investment volatility: A critique of standard beta estimation and a simple way forward," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1358-1367, June.
    19. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    20. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    21. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014. "Predicting BRICS stock returns using ARFIMA models," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.
    22. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1673-1736.
    23. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    24. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
    25. Levi, Yaron & Welch, Ivo, 2017. "Best Practice for Cost-of-Capital Estimates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(2), pages 427-463, April.
    26. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    27. Malay Bhattacharyya & Dileep Kumar M & Ramesh Kumar, 2009. "Optimal sampling frequency for volatility forecast models for the Indian stock markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 38-54.
    28. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and Heterogeneous Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 609-628, July.
    29. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    30. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    31. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    32. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    33. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    34. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    35. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    36. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
    37. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    38. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," Review of Finance, European Finance Association, vol. 33(4), pages 1673-1736.
    39. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    40. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    41. Papageorgiou, Nicolas & Reeves, Jonathan J. & Xie, Xuan, 2016. "Betas and the myth of market neutrality," International Journal of Forecasting, Elsevier, vol. 32(2), pages 548-558.
    42. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    43. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    44. Murray, Scott & Xia, Yusen & Xiao, Houping, 2024. "Charting by machines," Journal of Financial Economics, Elsevier, vol. 153(C).
    45. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    46. Kevin Q. Wang, 2003. "Asset Pricing with Conditioning Information: A New Test," Journal of Finance, American Finance Association, vol. 58(1), pages 161-196, February.
    47. Cenesizoglu, Tolga & de Oliveira Ferrazoli Ribeiro, Fabio & Reeves, Jonathan J., 2017. "Beta forecasting at long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 936-957.
    48. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    49. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    50. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Luis A. Gil-Alana & Miguel Martin-Valmayor, 2020. "Persistence in the Realized Betas: Some Evidence for the Spanish Stock Market," CESifo Working Paper Series 8171, CESifo.
    2. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    3. Valadkhani, Abbas, 2023. "Asymmetric downside risk across different sectors of the US equity market," Global Finance Journal, Elsevier, vol. 57(C).
    4. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The memory of stock return volatility: Asset pricing implications," Journal of Financial Markets, Elsevier, vol. 47(C).
    5. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "Realized semibetas: Disentangling “good” and “bad” downside risks," Journal of Financial Economics, Elsevier, vol. 144(1), pages 227-246.
    6. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2020. "Beta uncertainty," Journal of Banking & Finance, Elsevier, vol. 116(C).
    7. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    8. Bollerslev, Tim & Medeiros, Marcelo C. & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "From zero to hero: Realized partial (co)variances," Journal of Econometrics, Elsevier, vol. 231(2), pages 348-360.
    9. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    10. Doan, Bao & Lee, John B. & Liu, Qianqiu & Reeves, Jonathan J., 2022. "Beta measurement with high frequency returns," Finance Research Letters, Elsevier, vol. 47(PA).
    11. Cenesizoglu, Tolga & de Oliveira Ferrazoli Ribeiro, Fabio & Reeves, Jonathan J., 2017. "Beta forecasting at long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 936-957.
    12. Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    13. Tolga Cenesizoglu & Denada Ibrushi, 2020. "Predicting Systematic Risk With Macroeconomic And Financial Variables," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 43(3), pages 649-673, August.
    14. Liu, Jinjing, 2023. "A novel downside beta and expected stock returns," International Review of Financial Analysis, Elsevier, vol. 85(C).
    15. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    16. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    17. S. Lardic & V. Mignon, 2002. "Term premium and long-range dependence in volatility : A FIGARCH-M estimation on some Asian countries," THEMA Working Papers 2002-26, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    19. Hollstein, Fabian & Prokopczuk, Marcel, 2022. "Testing Factor Models in the Cross-Section," Journal of Banking & Finance, Elsevier, vol. 145(C).
    20. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.

    More about this item

    Keywords

    Realized beta; Structural break; Asymmetric risk; HAR model; LASSO;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:80:y:2025:i:c:s0927539824001099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.