IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v177y2013i2p171-184.html
   My bibliography  Save this article

Forecasting a long memory process subject to structural breaks

Author

Listed:
  • Wang, Cindy Shin-Huei
  • Bauwens, Luc
  • Hsiao, Cheng

Abstract

We develop an easy-to-implement method for forecasting a stationary autoregressive fractionally integrated moving average (ARFIMA) process subject to structural breaks with unknown break dates. We show that an ARFIMA process subject to a mean shift and a change in the long memory parameter can be well approximated by an autoregressive (AR) model and suggest using an information criterion (AIC or Mallows’ Cp) to choose the order of the approximate AR model. Our method avoids the issue of estimation inaccuracy of the long memory parameter and the issue of spurious breaks in finite sample. Insights from our theoretical analysis are confirmed by Monte Carlo experiments, through which we also find that our method provides a substantial improvement over existing prediction methods. An empirical application to the realized volatility of three exchange rates illustrates the usefulness of our forecasting procedure. The empirical success of the HAR-RV model can be explained, from an econometric perspective, by our theoretical and simulation results.

Suggested Citation

  • Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
  • Handle: RePEc:eee:econom:v:177:y:2013:i:2:p:171-184
    DOI: 10.1016/j.jeconom.2013.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407613000833
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters,in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46 National Bureau of Economic Research, Inc.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    6. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    7. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    8. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    9. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    10. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    11. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    12. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
    13. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    14. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    15. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    16. Hirotugu Akaike, 1969. "Power spectrum estimation through autoregressive model fitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 407-419, December.
    17. Hyung, Namwon & Franses, Philip Hans & Penm, Jack, 2006. "Structural breaks and long memory in US inflation rates: Do they matter for forecasting?," Research in International Business and Finance, Elsevier, vol. 20(1), pages 95-110, March.
    18. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, March.
    19. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
    20. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    21. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    22. Christensen, Bent Jesper & Nielsen, Morten Orregaard, 2006. "Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting," Journal of Econometrics, Elsevier, vol. 133(1), pages 343-371, July.
    23. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(04), pages 736-749, August.
    24. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bataa, Erdenebat & Izzeldin, Marwan & Osborn, Denise R., 2016. "Changes in the global oil market," Energy Economics, Elsevier, vol. 56(C), pages 161-176.
    2. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    3. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    4. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    5. repec:eee:phsmap:v:494:y:2018:i:c:p:27-39 is not listed on IDEAS

    More about this item

    Keywords

    Forecasting; Long memory process; Structural break; HAR model;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:177:y:2013:i:2:p:171-184. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.