IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2574.html

Forecasting a long memory process subject to structural breaks

Author

Listed:
  • WANG, Cindy Shin-Huei
  • BAUWENS, Luc
  • HSIAO, Cheng

Abstract

We develop an easy-to-implement method for forecasting a stationary autoregressive fractionally integrated moving average (ARFIMA) process subject to structural breaks with unknown break dates. We show that an ARFIMA process subject to a mean shift and a change in the long memory parameter can be well approximated by an autoregressive (AR) model and suggest using an information criterion (AIC or Mallows' Cp) to choose the order of the approximate AR model. Our method avoids the issue of estimation inaccuracy of the long memory parameter and the issue of spurious breaks in finite sample. Insights from our theoretical analysis are confirmed by Monte Carlo experiments, through which we also find that our method provides a substantial improvement over existing prediction methods. An empirical application to the realized volatility of three exchange rates illustrates the usefulness of our forecasting procedure. The empirical success of the HAR-RV model is explained, from an econometric perspective, by our theoretical and simulation results.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • WANG, Cindy Shin-Huei & BAUWENS, Luc & HSIAO, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," LIDAM Reprints CORE 2574, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2574
    Note: In : Journal of Econometrics, 177(2), 171-184, 2013
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    2. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Dynamics of variance risk premia: A new model for disentangling the price of risk," Journal of Econometrics, Elsevier, vol. 217(2), pages 312-334.
    3. Bataa, Erdenebat & Izzeldin, Marwan & Osborn, Denise R., 2016. "Changes in the global oil market," Energy Economics, Elsevier, vol. 56(C), pages 161-176.
    4. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    5. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    6. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    7. Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
    8. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    9. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    10. Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
    11. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.