IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp186-199.html
   My bibliography  Save this article

Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population

Author

Listed:
  • Johnson, Fred A.
  • Jensen, Gitte H.
  • Madsen, Jesper
  • Williams, Byron K.

Abstract

We explored the application of dynamic-optimization methods to the problem of pink-footed goose (Anser brachyrhynchus) management in western Europe. We were especially concerned with the extent to which uncertainty in population dynamics influenced an optimal management strategy, the gain in management performance that could be expected if uncertainty could be eliminated or reduced, and whether an adaptive or robust management strategy might be most appropriate in the face of uncertainty. We combined three alternative survival models with three alternative reproductive models to form a set of nine annual-cycle models for pink-footed geese. These models represent a wide range of possibilities concerning the extent to which demographic rates are density dependent or independent, and the extent to which they are influenced by spring temperatures. We calculated state-dependent harvest strategies for these models using stochastic dynamic programming and an objective function that maximized sustainable harvest, subject to a constraint on desired population size. As expected, attaining the largest mean objective value (i.e., the relative measure of management performance) depended on the ability to match a model-dependent optimal strategy with its generating model of population dynamics. The nine models suggested widely varying objective values regardless of the harvest strategy, with the density-independent models generally producing higher objective values than models with density-dependent survival. In the face of uncertainty as to which of the nine models is most appropriate, the optimal strategy assuming that both survival and reproduction were a function of goose abundance and spring temperatures maximized the expected minimum objective value (i.e., maxi–min). In contrast, the optimal strategy assuming equal model weights minimized the expected maximum loss in objective value. The expected value of eliminating model uncertainty was an increase in objective value of only 3.0%. This value represents the difference between the best that could be expected if the most appropriate model were known and the best that could be expected in the face of model uncertainty. The value of eliminating uncertainty about the survival process was substantially higher than that associated with the reproductive process, which is consistent with evidence that variation in survival is more important than variation in reproduction in relatively long-lived avian species. Comparing the expected objective value if the most appropriate model were known with that of the maxi–min robust strategy, we found the value of eliminating uncertainty to be an expected increase of 6.2% in objective value. This result underscores the conservatism of the maxi–min rule and suggests that risk-neutral managers would prefer the optimal strategy that maximizes expected value, which is also the strategy that is expected to minimize the maximum loss (i.e., a strategy based on equal model weights). The low value of information calculated for pink-footed geese suggests that a robust strategy (i.e., one in which no learning is anticipated) could be as nearly effective as an adaptive one (i.e., a strategy in which the relative credibility of models is assessed through time). Of course, an alternative explanation for the low value of information is that the set of population models we considered was too narrow to represent key uncertainties in population dynamics. Yet we know that questions about the presence of density dependence must be central to the development of a sustainable harvest strategy. And while there are potentially many environmental covariates that could help explain variation in survival or reproduction, our admission of models in which vital rates are drawn randomly from reasonable distributions represents a worst-case scenario for management. We suspect that much of the value of the various harvest strategies we calculated is derived from the fact that they are state dependent, such that appropriate harvest rates depend on population abundance and weather conditions, as well as our focus on an infinite time horizon for sustainability.

Suggested Citation

  • Johnson, Fred A. & Jensen, Gitte H. & Madsen, Jesper & Williams, Byron K., 2014. "Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population," Ecological Modelling, Elsevier, vol. 273(C), pages 186-199.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:186-199
    DOI: 10.1016/j.ecolmodel.2013.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Tonn & Mary English & Cheryl Travis, 2000. "A Framework for Understanding and Improving Environmental Decision Making," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 43(2), pages 163-183.
    2. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    3. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    4. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
    5. Williams, Byron K. & Eaton, Mitchell J. & Breininger, David R., 2011. "Adaptive resource management and the value of information," Ecological Modelling, Elsevier, vol. 222(18), pages 3429-3436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fred A. Johnson & Mitchell J. Eaton & James H. Williams & Gitte H. Jensen & Jesper Madsen, 2015. "Training Conservation Practitioners to be Better Decision Makers," Sustainability, MDPI, vol. 7(7), pages 1-20, June.
    2. Nilsson, L. & Bunnefeld, N. & Minderman, J. & Duthie, A. B, 2021. "Effects of stakeholder empowerment on crane population and agricultural production," Ecological Modelling, Elsevier, vol. 440(C).
    3. Johnson, Fred A. & Zimmerman, Guthrie S. & Jensen, Gitte H. & Clausen, Kevin K. & Frederiksen, Morten & Madsen, Jesper, 2020. "Using integrated population models for insights into monitoring programs: An application using pink-footed geese," Ecological Modelling, Elsevier, vol. 415(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Breininger & Brean Duncan & Mitchell Eaton & Fred Johnson & James Nichols, 2014. "Integrating Land Cover Modeling and Adaptive Management to Conserve Endangered Species and Reduce Catastrophic Fire Risk," Land, MDPI, vol. 3(3), pages 1-24, July.
    2. Schapaugh, Adam W. & Tyre, Andrew J., 2013. "Accounting for parametric uncertainty in Markov decision processes," Ecological Modelling, Elsevier, vol. 254(C), pages 15-21.
    3. Pierre Bernhard & Marc Deschamps, 2017. "Kalman on dynamics and contro, Linear System Theory, Optimal Control, and Filter," Working Papers 2017-10, CRESE.
    4. Jones, Randall E. & Cacho, Oscar J., 2000. "A Dynamic Optimisation Model of Weed Control," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123685, Australian Agricultural and Resource Economics Society.
    5. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    6. Pam Norton & Ravi Phatarfod, 2008. "Optimal Strategies In One-Day Cricket," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(04), pages 495-511.
    7. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    8. Tan, Madeleine Sui-Lay, 2016. "Policy coordination among the ASEAN-5: A global VAR analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 20-40.
    9. D. W. K. Yeung, 2008. "Dynamically Consistent Solution For A Pollution Management Game In Collaborative Abatement With Uncertain Future Payoffs," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 517-538.
    10. Korfhage, Thorben & Fischer-Weckemann, Björn, 2024. "Long-run consequences of informal elderly care and implications of public long-term care insurance," Journal of Health Economics, Elsevier, vol. 96(C).
    11. Crutchfield, Stephen R. & Brazee, Richard J., 1990. "An Integrated Model of Surface and Ground Water Quality," 1990 Annual meeting, August 5-8, Vancouver, Canada 271011, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    13. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    14. Eric D. Gould, 2008. "Marriage and Career: The Dynamic Decisions of Young Men," Journal of Human Capital, University of Chicago Press, vol. 2(4), pages 337-378.
    15. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    16. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    17. Dmitri Blueschke & Ivan Savin, 2015. "No such thing like perfect hammer: comparing different objective function specifications for optimal control," Jena Economics Research Papers 2015-005, Friedrich-Schiller-University Jena.
    18. Sieniutycz, Stanislaw, 2015. "Synthesizing modeling of power generation and power limits in energy systems," Energy, Elsevier, vol. 84(C), pages 255-266.
    19. Miller, Marcus & Papi, Laura, 1997. "The 'laissez faire' bias of managed floating," Journal of International Money and Finance, Elsevier, vol. 16(6), pages 989-1000, December.
    20. Changming Ji & Chuangang Li & Boquan Wang & Minghao Liu & Liping Wang, 2017. "Multi-Stage Dynamic Programming Method for Short-Term Cascade Reservoirs Optimal Operation with Flow Attenuation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4571-4586, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:186-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.