IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v415y2020ics0304380019303771.html
   My bibliography  Save this article

Using integrated population models for insights into monitoring programs: An application using pink-footed geese

Author

Listed:
  • Johnson, Fred A.
  • Zimmerman, Guthrie S.
  • Jensen, Gitte H.
  • Clausen, Kevin K.
  • Frederiksen, Morten
  • Madsen, Jesper

Abstract

Development of integrated population models (IPMs) assume the absence of systematic bias in monitoring programs, yet many potential sources of systematic bias in monitoring data exist (e.g., under-counts of abundance). By integrating multiple sources of data, we can assess whether various sources of monitoring data provide consistent inferences about changes in population size and, thus, whether monitoring programs appear unbiased. For the purposes of understanding how IPMs could provide insights for monitoring programs, we used the Svalbard breeding population of pink-footed goose (Anser brachyrhynchus) as a case study. The Svalbard pink-footed goose is a well-studied species, the focus of the first adaptive-harvest-management program in Europe, and the subject of a variety of long-term monitoring programs. We examined two formulations of an IPM, but ultimately relied on the one that provided a satisfactory fit to all the available data as based on Chi-squared goodness of fit tests. Our analyses suggest a negative bias in November counts (-20 %), a negative bias in capture-mark-recapture estimates of survival (-3 %), and a negative bias in indices of productivity (-23 %). We offer possible explanations for these biases, whether the degree of bias seems reasonable considering those explanations, and how bias might be investigated directly and ultimately avoided or corrected. Finally, we discuss implications of our work for developing IPMs and associated monitoring programs for managing pink-footed geese and other waterbird species.

Suggested Citation

  • Johnson, Fred A. & Zimmerman, Guthrie S. & Jensen, Gitte H. & Clausen, Kevin K. & Frederiksen, Morten & Madsen, Jesper, 2020. "Using integrated population models for insights into monitoring programs: An application using pink-footed geese," Ecological Modelling, Elsevier, vol. 415(C).
  • Handle: RePEc:eee:ecomod:v:415:y:2020:i:c:s0304380019303771
    DOI: 10.1016/j.ecolmodel.2019.108869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tempel, Douglas J. & Peery, M.Z. & Gutiérrez, R.J., 2014. "Using integrated population models to improve conservation monitoring: California spotted owls as a case study," Ecological Modelling, Elsevier, vol. 289(C), pages 86-95.
    2. Sethi, Gautam & Costello, Christopher & Fisher, Anthony & Hanemann, Michael & Karp, Larry, 2005. "Fishery management under multiple uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 300-318, September.
    3. Mosnier, A. & Doniol-Valcroze, T. & Gosselin, J.-F. & Lesage, V. & Measures, L.N. & Hammill, M.O., 2015. "Insights into processes of population decline using an integrated population model: The case of the St. Lawrence Estuary beluga (Delphinapterus leucas)," Ecological Modelling, Elsevier, vol. 314(C), pages 15-31.
    4. R. T. Alisauskas & M. S. Lindberg, 2002. "Effects of neckbands on survival and fidelity of white-fronted and Canada geese captured as non-breeding adults," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 521-537.
    5. Denwood, Matthew J., 2016. "runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i09).
    6. Johnson, Fred A. & Jensen, Gitte H. & Madsen, Jesper & Williams, Byron K., 2014. "Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population," Ecological Modelling, Elsevier, vol. 273(C), pages 186-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    2. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    3. Violaine Tarizzo & Eric Tromeur & Olivier Thébaud & Richard Little & Sarah Jennings & Luc Doyen, 2018. "Risk averse policies foster bio-economic sustainability in mixed fisheries," Cahiers du GREThA (2007-2019) 2018-07, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    4. van Dijk, Diana & Hendrix, Eligius M.T. & Haijema, Rene & Groeneveld, Rolf A. & van Ierland, Ekko C., 2014. "On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota," Ecological Modelling, Elsevier, vol. 272(C), pages 68-75.
    5. Tarui, Nori & Mason, Charles F. & Polasky, Stephen & Ellis, Greg, 2008. "Cooperation in the commons with unobservable actions," Journal of Environmental Economics and Management, Elsevier, vol. 55(1), pages 37-51, January.
    6. Dexen DZ. Xi & C.B. Dean & Stephen W. Taylor, 2020. "Modeling the duration and size of extended attack wildfires as dependent outcomes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    7. Singh, Rajesh & Weninger, Quinn & Doyle, Matthew, 2006. "Fisheries management with stock growth uncertainty and costly capital adjustment," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 582-599, September.
    8. Patrice Loisel, 2019. "Stochastic perturbations and fisheries management," Post-Print hal-02276979, HAL.
    9. Jensen, Frank & Vestergaard, Niels, 2007. "Asymmetric information and uncertainty: The usefulness of logbooks as a regulation measure," Ecological Economics, Elsevier, vol. 63(4), pages 815-827, September.
    10. Ng'ombe, John, 2019. "Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation," Thesis Commons jckt7, Center for Open Science.
    11. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    12. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    13. Hansen, Lars Gårn & Jensen, Frank, 2017. "Regulating fisheries under uncertainty," Resource and Energy Economics, Elsevier, vol. 50(C), pages 164-177.
    14. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2015. "Partial enclosure of the commons," Journal of Public Economics, Elsevier, vol. 121(C), pages 69-78.
    15. Tromeur, Eric & Doyen, Luc & Tarizzo, Violaine & Little, L. Richard & Jennings, Sarah & Thébaud, Olivier, 2021. "Risk averse policies foster bio-economic sustainability in mixed fisheries," Ecological Economics, Elsevier, vol. 190(C).
    16. Sareh Vosooghi, 2019. "Panic-Based Overfishing in Transboundary Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1287-1313, August.
    17. Koji Kotani & Makoto Kakinaka & Hiroyuki Matsuda, 2008. "Optimal escapement levels on renewable resource management under process uncertainty: some implications of convex unit harvest cost," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 9(2), pages 107-118, June.
    18. Laura Cowen & Carl J. Schwarz, 2006. "The Jolly–Seber Model with Tag Loss," Biometrics, The International Biometric Society, vol. 62(3), pages 699-705, September.
    19. Kelsall, Claudia & Quaas, Martin F. & Quérou, Nicolas, 2023. "Risk aversion in renewable resource harvesting," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    20. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:415:y:2020:i:c:s0304380019303771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.