A hybrid model for intraday volatility prediction in Bitcoin markets
Author
Abstract
Suggested Citation
DOI: 10.1016/j.najef.2025.102426
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
- Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
- Peter Reinhard Hansen & Zhuo Huang, 2016.
"Exponential GARCH Modeling With Realized Measures of Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
- Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," Economics Working Papers ECO2012/26, European University Institute.
- Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
- Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
- Jying-Nan Wang & Hung-Chun Liu & Shu-Mei Chiang & Yuan-Teng Hsu, 2019. "On the predictive power of ARJI volatility forecasts for Bitcoin," Applied Economics, Taylor & Francis Journals, vol. 51(44), pages 4849-4855, September.
- Clark, Todd E. & West, Kenneth D., 2006.
"Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
- Todd E. Clark & Kenneth D. West, 2004. "Using out-of-sample mean squared prediction errors to test the Martingale difference hypothesis," Research Working Paper RWP 04-03, Federal Reserve Bank of Kansas City.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
- Christian Contino & Richard H. Gerlach, 2017. "Bayesian tail‐risk forecasting using realized GARCH," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(2), pages 213-236, March.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
- Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2024. "Volatility Forecasting with Machine Learning and Intraday Commonality," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 492-530.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
- Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
- Qinkai Han & Hao Wu & Tao Hu & Fulei Chu, 2018. "Short-Term Wind Speed Forecasting Based on Signal Decomposing Algorithm and Hybrid Linear/Nonlinear Models," Energies, MDPI, vol. 11(11), pages 1-23, November.
- Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
- Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
- Dyhrberg, Anne H. & Foley, Sean & Svec, Jiri, 2018. "How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets," Economics Letters, Elsevier, vol. 171(C), pages 140-143.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024.
"Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility,"
Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Stavroula Yfanti & Georgios Chortareas & Menelaos Karanasos & Emmanouil Noikokyris, 2022. "A three‐dimensional asymmetric power HEAVY model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2737-2761, July.
- Xu, Buyun & Wu, Zhimin, 2025. "Real-time GARCH@CARR: A joint model of returns, realized measure of volatility and current intraday information," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
- Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
Post-Print
hal-03331122, HAL.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
- Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Wu, Xinyu & Zhao, An & Wang, Yuyao & Han, Yang, 2024. "Forecasting Chinese stock market volatility with high-frequency intraday and current return information," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
- Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
- Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
- Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016.
"Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
- Manabu Asai & Michael McAleer, 2017.
"Forecasting the volatility of Nikkei 225 futures,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
- Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Documentos de Trabajo del ICAE 2017-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, M. & McAleer, M.J., 2017. "Forecasting the Volatility of Nikkei 225 Futures," Econometric Institute Research Papers TI 2017-017/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer, 2017. "Forecasting the Volatility of Nikkei 225 Futures," Tinbergen Institute Discussion Papers 17-017/III, Tinbergen Institute.
- Luo, Di & Mishra, Tapas & Yarovaya, Larisa & Zhang, Zhuang, 2021. "Investing during a Fintech Revolution: Ambiguity and return risk in cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
- Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
More about this item
Keywords
Decomposition algorithm; EMD; REGARCH; BEMD; Intraday; Volatility forecasting;All these keywords.
JEL classification:
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:78:y:2025:i:c:s106294082500066x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.