IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v26y2013icp310-322.html
   My bibliography  Save this article

Stress testing correlation matrices for risk management

Author

Listed:
  • So, Mike K.P.
  • Wong, Jerry
  • Asai, Manabu

Abstract

Evaluating portfolio risk typically requires that correlation estimates of security returns be made. Historical financial events have shown that correlations can rise quickly, causing a huge increase in portfolio risk. Therefore, in stress testing portfolios, it is important to consider the influence of a sudden surge in selected correlations. Standard correlation stress testing mechanisms require us to change the selected correlations to designated values. However, the correlation matrix may become non-positive definite after some of its entries are altered. This paper proposes a blocking method by which an existing correlation matrix can be converted to incorporate change while keeping the matrix positive definite. In comparison with existing methods that usually only achieve semi-positive definiteness, the proposed method outperforms in the revised elements, while the approximation error of the non-revised elements is maintained within acceptable levels. Simulations show that our method is efficient and performs well for dimensions of 100, 500 and 1000. Our method is also shown to be more reliable in stress testing higher dimension correlation matrices. Information on the performance of the blocking method using a high-dimensional real data is also provided.

Suggested Citation

  • So, Mike K.P. & Wong, Jerry & Asai, Manabu, 2013. "Stress testing correlation matrices for risk management," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 310-322.
  • Handle: RePEc:eee:ecofin:v:26:y:2013:i:c:p:310-322
    DOI: 10.1016/j.najef.2013.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940813000223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2013.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2013. "Conditional correlations and volatility spillovers between crude oil and stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 116-138.
    2. Vineer Bhansali & Mark B. Wise, 2001. "Forecasting Portfolio Risk in Normal and Stressed Markets," Papers nlin/0108022, arXiv.org, revised Sep 2001.
    3. Jeremy Berkowitz, 1999. "A coherent framework for stress-testing," Finance and Economics Discussion Series 1999-29, Board of Governors of the Federal Reserve System (U.S.).
    4. Tan, Kok-Hui & Chan, Inn-Leng, 2003. "Stress testing using VaR approach--a case for Asian currencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 13(1), pages 39-55, February.
    5. Bank for International Settlements, 2005. "Stress testing at major financial institutions: survey results and practice," CGFS Papers, Bank for International Settlements, number 24.
    6. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    7. Papa Momar Ndiaye & François Oustry & Véronique Piolle, 2006. "Semidefinite optimisation for global risk modelling," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 142-153, July.
    8. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Lin Chang & Allen, David & McAleer, Michael, 2013. "Recent developments in financial economics and econometrics: An overview," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 217-226.
    2. Yu, Philip L.H. & Li, W.K. & Ng, F.C., 2014. "Formulating hypothetical scenarios in correlation stress testing via a Bayesian framework," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 17-33.
    3. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2018. "Many a little makes a mickle: Stress testing small and medium-sized German banks," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 237-253.
    4. Paraschiv, Florentina & Mudry, Pierre-Antoine & Andries, Alin Marius, 2015. "Stress-testing for portfolios of commodity futures," Economic Modelling, Elsevier, vol. 50(C), pages 9-18.
    5. Chungen Shen & Yunlong Wang & Wenjuan Xue & Lei-Hong Zhang, 2021. "An accelerated active-set algorithm for a quadratic semidefinite program with general constraints," Computational Optimization and Applications, Springer, vol. 78(1), pages 1-42, January.
    6. Chakraborty, Sandip & Kakani, Ram Kumar & Sampath, Aravind, 2022. "Portfolio risk and stress across the business cycle," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    7. Abildgren, Kim, 2014. "Far out in the tails – The historical distributions of macro-financial risk factors in Denmark," Nationaløkonomisk tidsskrift, Nationaløkonomisk Forening, vol. 2014(1), pages 1-31.
    8. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2015. "Many a little makes a mickle: Macro portfolio stress test for small and medium-sized German banks," Discussion Papers 23/2015, Deutsche Bundesbank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Sanjay, 2011. "Comparing simulation models for market risk stress testing," European Journal of Operational Research, Elsevier, vol. 213(1), pages 329-339, August.
    2. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    3. Apergis, Emmanuel & Apergis, Iraklis & Apergis, Nicholas, 2019. "A new macro stress testing approach for financial realignment in the Eurozone," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 52-80.
    4. Do, A. & Powell, R. & Yong, J. & Singh, A., 2020. "Time-varying asymmetric volatility spillover between global markets and China’s A, B and H-shares using EGARCH and DCC-EGARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Paraschiv, Florentina & Mudry, Pierre-Antoine & Andries, Alin Marius, 2015. "Stress-testing for portfolios of commodity futures," Economic Modelling, Elsevier, vol. 50(C), pages 9-18.
    6. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    7. Hou, Yang & Li, Steven & Wen, Fenghua, 2019. "Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach," Energy Economics, Elsevier, vol. 83(C), pages 119-143.
    8. Mr. Martin Cihak, 2007. "Introduction to Applied Stress Testing," IMF Working Papers 2007/059, International Monetary Fund.
    9. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    10. Ibrahim A. Onour, 2012. "Crude oil price and stock markets in major oil-exporting countries: evidence of decoupling feature," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 5(1), pages 1-10.
    11. Younes Bensalah, 2000. "Steps in Applying Extreme Value Theory to Finance: A Review," Staff Working Papers 00-20, Bank of Canada.
    12. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    13. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    14. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    15. Kiwoong Byun & Baeho Kim & Dong Hwan Oh, 2023. "Default Clustering Risk Premium and its Cross-Market Asset Pricing Implications," Finance and Economics Discussion Series 2023-055, Board of Governors of the Federal Reserve System (U.S.).
    16. Nakatani, Tomoaki & Teräsvirta, Timo, 2008. "Positivity constraints on the conditional variances in the family of conditional correlation GARCH models," Finance Research Letters, Elsevier, vol. 5(2), pages 88-95, June.
    17. Yassin Eltahir & Fethi Klabi & Osama Azmi Sallam & Hussien Omer Osman, 2019. "Interrelations in Saudi Stocks Market," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 91-97.
    18. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    19. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    20. K.S., Sujit & Ray, Subhajyoti, 2023. "Linear and nonlinear asymmetric relationship in crude oil, gold, stock market and exchange rates: An evidence from the UAE," Resources Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:26:y:2013:i:c:p:310-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.