IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v144y2022ics0165188922002317.html
   My bibliography  Save this article

Forecasting the propagation of pandemic shocks with a dynamic input-output model

Author

Listed:
  • Pichler, Anton
  • Pangallo, Marco
  • del Rio-Chanona, R. Maria
  • Lafond, François
  • Farmer, J. Doyne

Abstract

We introduce a dynamic disequilibrium input-output model that was used to forecast the economics of the COVID-19 pandemic. This model was designed to understand the upstream and downstream propagation of the industry-specific demand and supply shocks caused by COVID-19, which were exceptional in their severity, suddenness and heterogeneity across industries. The model, which was inspired in part by previous work on the response to natural disasters, includes the introduction of a new functional form for production functions, which allowed us to create bespoke production functions for each industry based on a survey of industry analysts. We also introduced new elements for modeling inventories, consumption and labor. The resulting model made accurate real-time forecasts for the decline of sectoral and aggregate economic activity in the United Kingdom in the second quarter of 2020. We examine some of the theoretical implications of our model and find that the choice of production functions and inventory levels plays a key role in the propagation of pandemic shocks. Our work demonstrates that an out of equilibrium model calibrated against national accounting data can serve as a useful real time policy evaluation and forecasting tool.

Suggested Citation

  • Pichler, Anton & Pangallo, Marco & del Rio-Chanona, R. Maria & Lafond, François & Farmer, J. Doyne, 2022. "Forecasting the propagation of pandemic shocks with a dynamic input-output model," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:dyncon:v:144:y:2022:i:c:s0165188922002317
    DOI: 10.1016/j.jedc.2022.104527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188922002317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2022.104527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroyasu Inoue & Yasuyuki Todo, 2020. "The propagation of economic impacts through supply chains: The case of a mega-city lockdown to prevent the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-10, September.
    2. Surico, Paolo & Känzig, Diego & Hacıoğlu Hoke, Sinem, 2020. "Consumption in the time of Covid-19: Evidence from UK transaction data," CEPR Discussion Papers 14733, C.E.P.R. Discussion Papers.
    3. Henriet, Fanny & Hallegatte, Stéphane & Tabourier, Lionel, 2012. "Firm-network characteristics and economic robustness to natural disasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 150-167.
    4. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Joseph E. Stiglitz & Tania Treibich, 2020. "Rational Heuristics? Expectations And Behaviors In Evolving Economies With Heterogeneous Interacting Agents," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1487-1516, July.
    5. Luca Fornaro & Martin Wolf, 2020. "Covid-19 coronavirus and macroeconomic policy," Economics Working Papers 1713, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Pol Antras & Davin Chor & Thibault Fally & Russell Hillberry, 2012. "Measuring the Upstreamness of Production and Trade Flows," American Economic Review, American Economic Association, vol. 102(3), pages 412-416, May.
    7. Hiroyasu Inoue & Yasuyuki Todo, 2019. "Firm-level propagation of shocks through supply-chain networks," Nature Sustainability, Nature, vol. 2(9), pages 841-847, September.
    8. Bonadio, Barthélémy & Huo, Zhen & Levchenko, Andrei A. & Pandalai-Nayar, Nitya, 2021. "Global supply chains in the pandemic," Journal of International Economics, Elsevier, vol. 133(C).
    9. Robert Bierkandt & Leonie Wenz & Sven Norman Willner & Anders Levermann, 2014. "Acclimate—a model for economic damage propagation. Part 1: basic formulation of damage transfer within a global supply network and damage conserving dynamics," Environment Systems and Decisions, Springer, vol. 34(4), pages 507-524, December.
    10. Anton Pichler & J. Doyne Farmer, 2022. "Simultaneous supply and demand constraints in input–output networks: the case of Covid-19 in Germany, Italy, and Spain," Economic Systems Research, Taylor & Francis Journals, vol. 34(3), pages 273-293, July.
    11. Samuel Bentolila & Giuseppe Bertola, 1990. "Firing Costs and Labour Demand: How Bad is Eurosclerosis?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(3), pages 381-402.
    12. Domenico Delli Gatti & Severin Reissl, 2022. "Agent-Based Covid economics (ABC): Assessing non-pharmaceutical interventions and macro-stabilization policies [Optimal Targeted Lockdowns in a Multi-Group SIR Model]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 410-447.
    13. Christopher A. Pissarides, 2011. "Equilibrium in the Labor Market with Search Frictions," American Economic Review, American Economic Association, vol. 101(4), pages 1092-1105, June.
    14. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Mattia Guerini & Fabio Vanni & Giorgio Fagiolo & Tommaso Ferraresi & Leonardo Ghezzi & Mauro Napoletano & Andrea Roventini, 2021. "Assessing the economic effects of lockdowns in Italy: a computational Input-Output approach," LEM Papers Series 2021/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Dabo Guan & Daoping Wang & Stephane Hallegatte & Steven J. Davis & Jingwen Huo & Shuping Li & Yangchun Bai & Tianyang Lei & Qianyu Xue & D’Maris Coffman & Danyang Cheng & Peipei Chen & Xi Liang & Bing, 2020. "Global supply-chain effects of COVID-19 control measures," Nature Human Behaviour, Nature, vol. 4(6), pages 577-587, June.
    17. Célian Colon & Stéphane Hallegatte & Julie Rozenberg, 2021. "Criticality analysis of a country’s transport network via an agent-based supply chain model," Nature Sustainability, Nature, vol. 4(3), pages 209-215, March.
    18. Jean-Noël Barrot & Basile Grassi & Julien Sauvagnat, 2021. "Sectoral Effects of Social Distancing," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 277-281, May.
    19. Antoine Mandel & Vipin Veetil, 2020. "The Economic Cost of COVID Lockdowns: An Out-of-Equilibrium Analysis," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 431-451, October.
    20. Harald Fadinger & Jan Schymik, 2020. "The Effects of Working From Home on COVID-19 Infections and Production - A Macroeconomic Analysis for Germany," CRC TR 224 Discussion Paper Series crctr224_2020_167, University of Bonn and University of Mannheim, Germany.
    21. Serina Chang & Emma Pierson & Pang Wei Koh & Jaline Gerardin & Beth Redbird & David Grusky & Jure Leskovec, 2021. "Mobility network models of COVID-19 explain inequities and inform reopening," Nature, Nature, vol. 589(7840), pages 82-87, January.
    22. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    23. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    24. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    25. Anton Pichler & Marco Pangallo & R. Maria del Rio-Chanona & Franc{c}ois Lafond & J. Doyne Farmer, 2020. "Production networks and epidemic spreading: How to restart the UK economy?," Papers 2005.10585, arXiv.org.
    26. R Maria del Rio-Chanona & Penny Mealy & Anton Pichler & François Lafond & J Doyne Farmer, 2020. "Supply and demand shocks in the COVID-19 pandemic: an industry and occupation perspective," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 94-137.
    27. Jasper Verschuur & Elco E. Koks & Jim W. Hall, 2021. "Observed impacts of the COVID-19 pandemic on global trade," Nature Human Behaviour, Nature, vol. 5(3), pages 305-307, March.
    28. Raj Chetty & John N. Friedman & Michael Stepner & The Opportunity Insights Team, 2020. "The Economic Impacts of COVID-19: Evidence from a New Public Database Built Using Private Sector Data," NBER Working Papers 27431, National Bureau of Economic Research, Inc.
    29. Andre F. T. Avelino & Sandy Dall'erba, 2019. "Comparing the Economic Impact of Natural Disasters Generated by Different Input–Output Models: An Application to the 2007 Chehalis River Flood (WA)," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 85-104, January.
    30. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    31. Alan S. Blinder, 1981. "Retail Inventory Behavior and Business Fluctuations," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 12(2), pages 443-520.
    32. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    33. Albert E. Steenge & Marija Bockarjova, 2007. "Thinking about Imbalances in Post-catastrophe Economies: An Input-Output based Proposition," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 205-223.
    34. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2007. "Credit chains and bankruptcy propagation in production networks," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2061-2084, June.
    35. Hiroyasu Inoue & Yasuyuki Todo, 2020. "The propagation of the economic impact through supply chains: The case of a mega-city lockdown against the spread of COVID-19," Papers 2003.14002, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Pangallo & Alberto Aleta & R. Maria del Rio-Chanona & Anton Pichler & David Martín-Corral & Matteo Chinazzi & François Lafond & Marco Ajelli & Esteban Moro & Yamir Moreno & Alessandro Vespignani, 2024. "The unequal effects of the health–economy trade-off during the COVID-19 pandemic," Nature Human Behaviour, Nature, vol. 8(2), pages 264-275, February.
    2. Temel, Tugrul & Phumpiu, Paul, 2023. "Policy Design from a Network Perspective: Targeting a Sector, Cascade of Links, Network Resilience," MPRA Paper 118466, University Library of Munich, Germany.
    3. Tijs W. Alleman & Koen Schoors & Jan M. Baetens, 2023. "Validating a dynamic input-output model for the propagation of supply and demand shocks during the COVID-19 pandemic in Belgium," Papers 2305.16377, arXiv.org, revised Jan 2024.
    4. Temel, Tugrul & Phumpiu, Paul, 2023. "Policy Design from a Network Perspective: Targeting a Sector, Cascade of Links, Network Resilience," MPRA Paper 118389, University Library of Munich, Germany.
    5. Hardik Rajpal & Omar A Guerrero, 2023. "Synergistic Small Worlds that Drive Technological Sophistication," Papers 2301.04579, arXiv.org, revised Jul 2023.
    6. Tijs W. Alleman & Jan M. Baetens, 2024. "Assessing the impact of forced and voluntary behavioral changes on economic-epidemiological co-dynamics: A comparative case study between Belgium and Sweden during the 2020 COVID-19 pandemic," Papers 2401.08442, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pichler, Anton & Pangallo, Marco & del Rio-Chanona, R. Maria & Lafond, François & Farmer, J. Doyne, 2020. "In and out of lockdown: Propagation of supply and demand shocks in a dynamic input-output model," INET Oxford Working Papers 2021-18, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Feb 2021.
    2. Anton Pichler & J. Doyne Farmer, 2022. "Simultaneous supply and demand constraints in input–output networks: the case of Covid-19 in Germany, Italy, and Spain," Economic Systems Research, Taylor & Francis Journals, vol. 34(3), pages 273-293, July.
    3. Antoine Mandel & Vipin Veetil, 2020. "The Economic Cost of COVID Lockdowns: An Out-of-Equilibrium Analysis," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 431-451, October.
    4. Qianxue Zhang, 2022. "The Hubei lockdown and its global impacts via supply chains," Review of International Economics, Wiley Blackwell, vol. 30(4), pages 1087-1109, September.
    5. Hiroyasu Inoue, 2021. "Propagation of International Supply-Chain Disruptions between Firms in a Country," JRFM, MDPI, vol. 14(10), pages 1-14, October.
    6. Hiroyasu Inoue & Yohsuke Murase & Yasuyuki Todo, 2021. "Do economic effects of the anti-COVID-19 lockdowns in different regions interact through supply chains?," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-19, July.
    7. Anton Pichler & Marco Pangallo & R. Maria del Rio-Chanona & Franc{c}ois Lafond & J. Doyne Farmer, 2020. "Production networks and epidemic spreading: How to restart the UK economy?," Papers 2005.10585, arXiv.org.
    8. Giammetti, Raffaele & Papi, Luca & Teobaldelli, Désirée & Ticchi, Davide, 2022. "The optimality of age-based lockdown policies," Journal of Policy Modeling, Elsevier, vol. 44(3), pages 722-738.
    9. Daoping Wang & Ottar N. Bjørnstad & Tianyang Lei & Yida Sun & Jingwen Huo & Qi Hao & Zhao Zeng & Shupeng Zhu & Stéphane Hallegatte & Ruiyun Li & Dabo Guan & Nils C. Stenseth, 2023. "Supply chains create global benefits from improved vaccine accessibility," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    11. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    12. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. INOUE Hiroyasu & TODO Yasuyuki, 2022. "Propagation of Overseas Economic Shocks through Global Supply Chains: Firm-level evidence," Discussion papers 22062, Research Institute of Economy, Trade and Industry (RIETI).
    14. INOUE Hiroyasu & MURASE Yohsuke & TODO Yasuyuki, 2022. "Lockdowns Require Geographic Coordination because of the Propagation of Economic Effects through Supply Chains," Discussion papers 22076, Research Institute of Economy, Trade and Industry (RIETI).
    15. Eppinger, Peter S. & Felbermayr, Gabriel & Krebs, Oliver & Kukharskyy, Bohdan, 2020. "Covid-19 shocking global value chains," Kiel Working Papers 2167, Kiel Institute for the World Economy (IfW Kiel).
    16. Peter Eppinger & Gabriel J. Felbermayr & Oliver Krebs & Bohdan Kukharskyy, 2021. "Decoupling Global Value Chains," CESifo Working Paper Series 9079, CESifo.
    17. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Tommaso Ferraresi & Leonardo Ghezzi, 2022. "A regional Input-Output model of the Covid-19 crisis in Italy: decomposing demand and supply factors," LEM Papers Series 2022/04, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Dabo Guan & Daoping Wang & Stephane Hallegatte & Steven J. Davis & Jingwen Huo & Shuping Li & Yangchun Bai & Tianyang Lei & Qianyu Xue & D’Maris Coffman & Danyang Cheng & Peipei Chen & Xi Liang & Bing, 2020. "Global supply-chain effects of COVID-19 control measures," Nature Human Behaviour, Nature, vol. 4(6), pages 577-587, June.
    19. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    20. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    21. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    22. Nano Prawoto & Eko Priyo Purnomo & Abitassha Az Zahra, 2020. "The Impacts of Covid-19 Pandemic on Socio-Economic Mobility in Indonesia," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(3), pages 57-71.

    More about this item

    Keywords

    COVID-19; Production network; Production function; Inventories; Out-of-equilibrium modeling;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • D57 - Microeconomics - - General Equilibrium and Disequilibrium - - - Input-Output Tables and Analysis
    • E00 - Macroeconomics and Monetary Economics - - General - - - General
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • I19 - Health, Education, and Welfare - - Health - - - Other
    • O49 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:144:y:2022:i:c:s0165188922002317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.