IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Spatial latent class analysis model for spatially distributed multivariate binary data

  • Wall, Melanie M.
  • Liu, Xuan
Registered author(s):

    A spatial latent class analysis model that extends the classic latent class analysis model by adding spatial structure to the latent class distribution through the use of the multinomial probit model is introduced. Linear combinations of independent Gaussian spatial processes are used to develop multivariate spatial processes that are underlying the categorical latent classes. This allows the latent class membership to be correlated across spatially distributed sites and it allows correlation between the probabilities of particular types of classes at any one site. The number of latent classes is assumed to be fixed but is chosen by model comparison via cross-validation. An application of the spatial latent class analysis model is shown using soil pollution samples where 8 heavy metals were measured to be above or below government pollution limits across a 25 square kilometer region. Estimation is performed within a Bayesian framework using MCMC and is implemented using the OpenBUGS software.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V8V-4T4J824-1/2/11f11b1c7ac7c44f58353507feb46927
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 53 (2009)
    Issue (Month): 8 (June)
    Pages: 3057-3069

    as
    in new window

    Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3057-3069
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    2. Holloway, Garth & Shankar, Bhavani & Rahman, Sanzidur, 2002. "Bayesian spatial probit estimation: a primer and an application to HYV rice adoption," Agricultural Economics, Blackwell, vol. 27(3), pages 383-402, November.
    3. Kurt Schmidheiny, 2004. "Income Segregation and Local Progressive Taxation: Empirical Evidence from Switzerland," CESifo Working Paper Series 1313, CESifo Group Munich.
    4. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
    5. BOLDUC, Denis & FORTIN, Bernard & GORDON, Stephen, 1995. "Multinomial Probit Estimation of Spatially Interdependent Choices: an Empirical Comparison of Two New Techniques," Cahiers de recherche 9508, Université Laval - Département d'économique.
    6. Bolduc, Denis, 1992. "Generalized autoregressive errors in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 155-170, April.
    7. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3057-3069. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.