IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v11y2011i2p159-206.html
   My bibliography  Save this article

Fitting fully observed recursive mixed-process models with cmp

Author

Listed:
  • David Roodman

    (Center for Global Development)

Abstract

At the heart of many econometric models are a linear function and a normal error. Examples include the classical small-sample linear regression model and the probit, ordered probit, multinomial probit, tobit, interval regression, and truncated-distribution regression models. Because the normal distribution has a natural multidimensional generalization, such models can be combined into mul- tiequation systems in which the errors share a multivariate normal distribution. The literature has historically focused on multistage procedures for fitting mixed models, which are more efficient computationally, if less so statistically, than maxi- mum likelihood. Direct maximum likelihood estimation has been made more prac- tical by faster computers and simulated likelihood methods for estimating higher- dimensional cumulative normal distributions. Such simulated likelihood methods include the Geweke–Hajivassiliou–Keane algorithm (Geweke, 1989, Econometrica 57: 1317–1339; Hajivassiliou and McFadden, 1998, Econometrica 66: 863–896; Keane, 1994, Econometrica 62: 95–116). Maximum likelihood also facilitates a generalization to switching, selection, and other models in which the number and types of equations vary by observation. The Stata command cmp fits seemingly un- related regressions models of this broad family. Its estimator is also consistent for recursive systems in which all endogenous variables appear on the right-hand sides as observed. If all the equations are structural, then estimation is full-information maximum likelihood. If only the final stage or stages are structural, then estima- tion is limited-information maximum likelihood. cmp can mimic a score of built-in and user-written Stata commands. It is also appropriate for a panoply of models that previously were hard to estimate. Heteroskedasticity, however, can render cmp inconsistent. This article explains the theory and implementation of cmp and of a related Mata function, ghk2(), that implements the Geweke–Hajivassiliou–Keane algorithm. Copyright 2011 by StataCorp LP.

Suggested Citation

  • David Roodman, 2011. "Fitting fully observed recursive mixed-process models with cmp," Stata Journal, StataCorp LP, vol. 11(2), pages 159-206, June.
  • Handle: RePEc:tsj:stataj:v:11:y:2011:i:2:p:159-206
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj11-2/st0224/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0224
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Drukker & Richard Gates, 2006. "Generating Halton sequences using Mata," Stata Journal, StataCorp LP, vol. 6(2), pages 214-228, June.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    5. Richard Chiburis & Michael Lokshin, 2007. "Maximum likelihood and two-step estimation of an ordered-probit selection model," Stata Journal, StataCorp LP, vol. 7(2), pages 167-182, June.
    6. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    7. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    8. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    9. Richard Gates, 2006. "A Mata Geweke–Hajivassiliou–Keane multivariate normal simulator," Stata Journal, StataCorp LP, vol. 6(2), pages 190-213, June.
    10. Amemiya, Takeshi, 1974. "Multivariate Regression and Simultaneous Equation Models when the Dependent Variables Are Truncated Normal," Econometrica, Econometric Society, vol. 42(6), pages 999-1012, November.
    11. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    12. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    13. Mark M. Pitt & Shahidur R. Khandker, 1998. "The Impact of Group-Based Credit Programs on Poor Households in Bangladesh: Does the Gender of Participants Matter?," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 958-996, October.
    14. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    15. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    16. William H. Greene, 1998. "Gender Economics Courses in Liberal Arts Colleges: Further Results," The Journal of Economic Education, Taylor & Francis Journals, vol. 29(4), pages 291-300, January.
    17. Alfonso Miranda & Sophia Rabe-Hesketh, 2005. "Maximum Likelihood Estimation of Endogenous Switching And Sample Selection Models for Binary, Count, And Ordinal Variables," Keele Economics Research Papers KERP 2005/14, Centre for Economic Research, Keele University.
    18. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
    19. Pagan, Adrian, 1979. "Some consequences of viewing LIML as an iterated Aitken estimator," Economics Letters, Elsevier, vol. 3(4), pages 369-372.
    20. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    21. Wilde, Joachim, 2000. "Identification of multiple equation probit models with endogenous dummy regressors," Economics Letters, Elsevier, vol. 69(3), pages 309-312, December.
    22. Michael Lokshin & Zurab Sajaia, 2011. "Impact of interventions on discrete outcomes: Maximum likelihood estimation of the binary choice models with binary endogenous regressors," Stata Journal, StataCorp LP, vol. 11(3), pages 368-385, September.
    23. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, vol. 3(3), pages 278-294, September.
    24. William J. Burke, 2009. "Fitting and interpreting Cragg's tobit alternative using Stata," Stata Journal, StataCorp LP, vol. 9(4), pages 584-592, December.
    25. G. S. Maddala & Lung-Fei Lee, 1976. "Recursive Models with Qualitative Endogenous Variables," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 525-545, National Bureau of Economic Research, Inc.
    26. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Roodman, 2009. "Estimating Fully Observed Recursive Mixed-Process Models with cmp," Working Papers 168, Center for Global Development.
    2. Steve Bradley & Rob Crouchley, 2020. "The effects of test scores and truancy on youth unemployment and inactivity: a simultaneous equations approach," Empirical Economics, Springer, vol. 59(4), pages 1799-1831, October.
    3. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
    4. Yasar, Mahmut, 2013. "Political Influence of Exporting and Import-Competing Firms: Evidence from Eastern European and Central Asian Countries," World Development, Elsevier, vol. 51(C), pages 154-168.
    5. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    6. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    7. Richard Gates, 2006. "A Mata Geweke–Hajivassiliou–Keane multivariate normal simulator," Stata Journal, StataCorp LP, vol. 6(2), pages 190-213, June.
    8. Tobias Müller & Stefan Boes, 2020. "Disability insurance benefits and labor supply decisions: evidence from a discontinuity in benefit awards," Empirical Economics, Springer, vol. 58(5), pages 2513-2544, May.
    9. GRAMMIG, Joachim & HUJER, Reinhard & SCHEIDLER, Michael, 2001. "The econometrics of airline network management," LIDAM Discussion Papers CORE 2001055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Fernandez-Cornejo, Jorge & Wechsler, Seth James, 2012. "Revisiting the Impact of Bt Corn Adoption by U.S. Farmers," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    11. Coban, Mustafa, 2017. "I'm fine with Immigrants, but ...: Attitudes, ethnic diversity, and redistribution preference," Discussion Paper Series 137, Julius Maximilian University of Würzburg, Chair of Economic Order and Social Policy.
    12. Fernandez-Cornejo, Jorge & Wechsler, Seth James, 2012. "Fifteen Years Later: Examining the Adoption of Bt Corn Varieties by U.S. Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124257, Agricultural and Applied Economics Association.
    13. Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
    14. Florence Goffette-Nagot & Claire Dujardin, 2005. "Neighborhood effects, public housing and unemployment in France," Working Papers 0505, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    15. D. Fabbri & C. Monfardini & R. Radice, 2004. "Testing exogeneity in the bivariate probit model: Monte Carlo evidence and an application to health economics," Working Papers 514, Dipartimento Scienze Economiche, Universita' di Bologna.
    16. Frédérique Savignac, 2006. "The impact of financial constraints on innovation: evidence from french manufacturing firms," Cahiers de la Maison des Sciences Economiques v06042, Université Panthéon-Sorbonne (Paris 1).
    17. Uwe Jirjahn, 2016. "Works Councils and Employer Attitudes toward the Incentive Effects of HRM Practices," Research Papers in Economics 2016-07, University of Trier, Department of Economics.
    18. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    19. Anja Lambrecht & Katja Seim & Catherine Tucker, 2011. "Stuck in the Adoption Funnel: The Effect of Interruptions in the Adoption Process on Usage," Marketing Science, INFORMS, vol. 30(2), pages 355-367, 03-04.
    20. Lucchetti, Riccardo & Pigini, Claudia, 2017. "DPB: Dynamic Panel Binary Data Models in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i08).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:11:y:2011:i:2:p:159-206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.stata-journal.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.