IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924003230.html
   My bibliography  Save this article

Analytical solution for the long- and short-range every-pair-interactions system

Author

Listed:
  • Ribeiro, Fabiano L.
  • Li, Yunfei
  • Born, Stefan
  • Rybski, Diego

Abstract

Many physical, biological, and social systems exhibit emergent properties arising from their components’ interactions (cells). In this study, we systematically treat every-pair interactions (a) that exhibit power-law dependence on the Euclidean distance and (b) act in structures that can be characterized using fractal geometry. It can represent the two-body interaction potential, the heat flux between two parts of a structure, friendship strength between two people, etc.. We analytically derive the average intensity of influence that one cell has on the others or, conversely, receives from them. This quantity is referred to as the mean interaction field of the cells, and we find that (i) in a long-range interaction regime, the mean interaction field increases following a power-law with the size of the system, (ii) in a short-range interaction regime, the field saturates, and (iii) in the intermediate range it follows a logarithmic behavior. To validate our analytical solution, we perform numerical simulations. For long-range interactions, the theoretical calculations align closely with the numerical results. However, for short-range interactions, we observe that discreteness significantly impacts the continuum approximation used in the derivation, leading to incorrect asymptotic behavior in this regime. To address this issue, we propose an expansion that substantially improves the accuracy of the analytical expression. We discuss applications of the every-pair interactions system proposed, and one of them is to explore a framework for estimating the fractal dimension of unknown structures. This approach offers an alternative to established methods such as box-counting or sandbox methods. Overall, we believe that our analytical work will have broad applicability in systems where every-pair interactions play a role.

Suggested Citation

  • Ribeiro, Fabiano L. & Li, Yunfei & Born, Stefan & Rybski, Diego, 2024. "Analytical solution for the long- and short-range every-pair-interactions system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924003230
    DOI: 10.1016/j.chaos.2024.114771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924003230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.