IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v434y2015icp201-210.html
   My bibliography  Save this article

A one dimensional model of population growth

Author

Listed:
  • Ribeiro, Fabiano L.
  • Ribeiro, Kayo N.

Abstract

In this work, a one dimensional population growth model is proposed. The model, based on the cooperative and competitive individual–individual distance-dependent interaction, allows us to get a full analytical solution. With this analytical approach, it was possible to investigate the dynamics of the population according to some parameters, as intrinsic growth rate, strength of the interaction between individuals, and the distance-dependent interaction. As a consequence of the individuals’ interaction, a rich phase diagram to which the population has access was observed. The phases observed are: convergence to carrying capacity, exponential growth, divergence at finite time, and extinction. Moreover, it was also observed that some phases are strictly dependent on the initial condition. For instance, in the cooperative regime with negative intrinsic growth rate, the population can diverge or become extinct according to the initial population size. The phases accessible to the population can be seen as a macroscopic behavior which emerges from the interaction among the individuals (the microscopic level).

Suggested Citation

  • Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
  • Handle: RePEc:eee:phsmap:v:434:y:2015:i:c:p:201-210
    DOI: 10.1016/j.physa.2015.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115002745
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strzałka, Dominik & Grabowski, Franciszek, 2008. "Towards possible q-generalizations of the Malthus and Verhulst growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2511-2518.
    2. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    3. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    4. Cabella, Brenno Caetano Troca & Ribeiro, Fabiano & Martinez, Alexandre Souto, 2012. "Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1281-1286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ribeiro, Fabiano L. & Li, Yunfei & Born, Stefan & Rybski, Diego, 2024. "Analytical solution for the long- and short-range every-pair-interactions system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    3. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Netto, Vinicius M. & Meirelles, João Vitor & Ribeiro, Fabiano L., 2017. "Social Interaction and the City: The Effect of Space on the Reduction of Entropy," SocArXiv kdfkt, Center for Open Science.
    5. Moriguchi, Kai, 2018. "An approach for deriving growth equations for quantities exhibiting cumulative growth based on stochastic interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1150-1163.
    6. Vinicius M. Netto & Joao Meirelles & Fabiano L. Ribeiro, 2017. "Social Interaction and the City: The Effect of Space on the Reduction of Entropy," Complexity, Hindawi, vol. 2017, pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    2. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    3. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    4. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
    5. Wilson Lara & Stella Bogino & Felipe Bravo, 2018. "Multilevel analysis of dendroclimatic series with the R-package BIOdry," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-23, May.
    6. Rajan Varadarajan, 2020. "Advancing theory in marketing: insights from conversations in other disciplines," AMS Review, Springer;Academy of Marketing Science, vol. 10(1), pages 73-84, June.
    7. Zuzana Starostová & Marek Konarzewski & Jan Kozłowski & Lukáš Kratochvíl, 2013. "Ontogeny of Metabolic Rate and Red Blood Cell Size in Eyelid Geckos: Species Follow Different Paths," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    8. Carl‐Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2021. "Fetal origins—A life cycle model of health and aging from conception to death," Health Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 1276-1290, June.
    9. Witting, Lars, 2017. "The natural selection of metabolism and mass selects allometric transitions from prokaryotes to mammals," Theoretical Population Biology, Elsevier, vol. 117(C), pages 23-42.
    10. Dalgaard, Carl-Johan & Strulik, Holger, 2008. "Energy Distribution, Power Laws, and Economic Growth," Hannover Economic Papers (HEP) dp-385, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    12. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    13. Giannetti, Biagio F. & Marcilio, Maria De Fatima D.F.B. & Coscieme, Luca & Agostinho, Feni & Liu, Gengyuan & Almeida, Cecilia M.V.B., 2019. "Howard Odum’s “Self-organization, transformity and information”: Three decades of empirical evidence," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    14. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    15. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    16. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    17. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    18. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    19. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    20. Christos Makriyannis, 2023. "How the Biophysical Paradigm Impedes the Scientific Advancement of Ecological Economics: A Transdisciplinary Analysis," Sustainability, MDPI, vol. 15(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:434:y:2015:i:c:p:201-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.