IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model

  • Cabella, Brenno Caetano Troca
  • Ribeiro, Fabiano
  • Martinez, Alexandre Souto
Registered author(s):

    We consider a generalized two-species population dynamic model and analytically solve it for the amensalism and commensalism ecological interactions. These two-species models can be simplified to a one-species model with a time dependent extrinsic growth factor. With a one-species model with an effective carrying capacity one is able to retrieve the steady state solutions of the previous one-species model. The equivalence obtained between the effective carrying capacity and the extrinsic growth factor is complete only for a particular case, the Gompertz model. Here we unveil important aspects of sigmoid growth curves, which are relevant to growth processes and population dynamics.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111008533
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 391 (2012)
    Issue (Month): 4 ()
    Pages: 1281-1286

    as
    in new window

    Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1281-1286
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Grabowski, Franciszek, 2010. "Logistic equation of arbitrary order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3081-3093.
    2. Souto Martinez, Alexandre & Silva González, Rodrigo & Lauri Espíndola, Aquino, 2009. "Generalized exponential function and discrete growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2922-2930.
    3. Strzałka, Dominik & Grabowski, Franciszek, 2008. "Towards possible q-generalizations of the Malthus and Verhulst growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2511-2518.
    4. Alexandre Souto Martinez & Rodrigo Silva Gonzalez & Cesar Augusto Sangaletti Tercariol, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Papers 0803.2635, arXiv.org, revised May 2008.
    5. Martinez, Alexandre Souto & González, Rodrigo Silva & Terçariol, César Augusto Sangaletti, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5679-5687.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1281-1286. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.