IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921009632.html
   My bibliography  Save this article

Interplay between scales in the nonlocal FKPP equation

Author

Listed:
  • Piva, G.G.
  • Colombo, E.H.
  • Anteneodo, C.

Abstract

We consider a generalization of the FKPP equation for the evolution of the spatial density of a single-species population where all the terms are nonlocal. That is, the spatial extension of each process (growth, competition and diffusion) is ruled by an influence function, with a characteristic shape and range of action. Our purpose is to investigate the interference between these different components in pattern formation. We show that, while competition is the leading process behind patterns, the other two can act either constructively or destructively. For instance, diffusion that is commonly known to smooth out the concentration field can actually favor pattern formation depending on the shape and range of the dispersal kernel. The results are supported by analytical calculations accompanied by numerical simulations.

Suggested Citation

  • Piva, G.G. & Colombo, E.H. & Anteneodo, C., 2021. "Interplay between scales in the nonlocal FKPP equation," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921009632
    DOI: 10.1016/j.chaos.2021.111609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cisternas, Jaime & Escaff, Daniel & Clerc, Marcel G. & Lefever, René & Tlidi, Mustapha, 2020. "Gapped vegetation patterns: Crown/root allometry and snaking bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Martinez, Alexandre Souto & González, Rodrigo Silva & Terçariol, César Augusto Sangaletti, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5679-5687.
    3. Souto Martinez, Alexandre & Silva González, Rodrigo & Lauri Espíndola, Aquino, 2009. "Generalized exponential function and discrete growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2922-2930.
    4. Alexandre Souto Martinez & Rodrigo Silva Gonzalez & Cesar Augusto Sangaletti Tercariol, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Papers 0803.2635, arXiv.org, revised May 2008.
    5. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinez-Garcia, Ricardo & Cabal, Ciro & Calabrese, Justin M. & Hernández-García, Emilio & Tarnita, Corina E. & López, Cristóbal & Bonachela, Juan A., 2023. "Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Navidad Maeso, David & Patriarca, Marco & Heinsalu, Els, 2022. "Influence of invasion on natural selection in dispersal-structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. Piva, G.G. & Anteneodo, C., 2025. "Influence of density-dependent diffusion on pattern formation in a refuge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    4. Pinto-Ramos, D. & Echeverría-Alar, S. & Clerc, M.G. & Tlidi, M., 2022. "Vegetation covers phase separation in inhomogeneous environments," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Destefano, Natália & Martinez, Alexandre Souto, 2011. "The additive property of the inconsistency degree in intertemporal decision making through the generalization of psychophysical laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1763-1772.
    2. dos Santos, Lindomar Soares & Destefano, Natália & Martinez, Alexandre Souto, 2018. "Decision making generalized by a cumulative probability weighting function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 250-259.
    3. Cabella, Brenno Caetano Troca & Ribeiro, Fabiano & Martinez, Alexandre Souto, 2012. "Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1281-1286.
    4. Natalia Destefano & Alexandre Souto Martinez, 2010. "The additive property of the inconsistency degree in intertemporal decision making through the generalization of psychophysical laws," Papers 1010.5648, arXiv.org, revised May 2011.
    5. Barberis, L. & Condat, C.A. & Román, P., 2011. "Vector growth universalities," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1100-1105.
    6. Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
    7. Moriguchi, Kai, 2018. "An approach for deriving growth equations for quantities exhibiting cumulative growth based on stochastic interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1150-1163.
    8. Rivera-Castro, Miguel A. & Miranda, José G.V. & Borges, Ernesto P. & Cajueiro, Daniel O. & Andrade, Roberto F.S., 2012. "A top–bottom price approach to understanding financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1489-1496.
    9. Takahashi, Taiki, 2010. "A social discounting model based on Tsallis’ statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3600-3603.
    10. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    11. Anders Levermann & Jonathan Bamber & Sybren Drijfhout & Andrey Ganopolski & Winfried Haeberli & Neil Harris & Matthias Huss & Kirstin Krüger & Timothy Lenton & Ronald Lindsay & Dirk Notz & Peter Wadha, 2012. "Potential climatic transitions with profound impact on Europe," Climatic Change, Springer, vol. 110(3), pages 845-878, February.
    12. Perz, Stephen G. & Muñoz-Carpena, Rafael & Kiker, Gregory & Holt, Robert D., 2013. "Evaluating ecological resilience with global sensitivity and uncertainty analysis," Ecological Modelling, Elsevier, vol. 263(C), pages 174-186.
    13. Jan Kakes & Jan Willem van den End, 2023. "Identifying financial fragmentation: do sovereign spreads in the EMU reflect differences in fundamentals?," Working Papers 778, DNB.
    14. Andrea Taramelli & Emiliana Valentini & Laura Piedelobo & Margherita Righini & Sergio Cappucci, 2021. "Assessment of State Transition Dynamics of Coastal Wetlands in Northern Venice Lagoon, Italy," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    15. Hong-Jia Chen & Chien-Chih Chen, 2016. "Testing the correlations between anomalies of statistical indexes of the geoelectric system and earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 877-895, November.
    16. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Colon, C. & Claessen, D. & Ghil, M., 2015. "Bifurcation analysis of an agent-based model for predator–prey interactions," Ecological Modelling, Elsevier, vol. 317(C), pages 93-106.
    18. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    19. Meng, Jia-Nan & Fang, Hongwei & Huang, Lei & He, Guojian & Liu, Xiaobo & Xu, Changyi & Wu, Xinghua & Scavia, Donald, 2022. "Multidimensional ecosystem assessment of Poyang Lake under anthropogenic influences," Ecological Modelling, Elsevier, vol. 473(C).
    20. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921009632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.