IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v441y2021ics0304380020304440.html
   My bibliography  Save this article

An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction

Author

Listed:
  • Dur, Gaël
  • Won, Eun-Ji
  • Han, Jeonghoon
  • Lee, Jae-Seong
  • Souissi, Sami

Abstract

Solar ultraviolet (UV) radiation, and UV-B (280–320 nm) in particular, has been shown to be partially responsible for adverse effects on zooplankton throughout the world, from damaged DNA to altered population dynamics. To cope with these effects, copepods have developed several protective systems, including avoiding extended and intense periods of exposure. How much UV-B exposure a cohort of thousands of spawners can withstand remains unknown. To evaluate the post-exposure effects of UV-B radiation on reproduction in egg-carrying copepods, we developed an individual-based model (IBM) that integrates in vivo data. We calibrated the IBM for a small cyclopoid copepod species, Paracyclopina nana, which is a biological model used in both ecotoxicology and aquaculture. Our findings improve our understanding of the species’ response to UV-B radiation. Significant radiative effects include decreased reproductive success (at ≥ 0.7 kJ.m − 2) and offspring production (at 0.6 ≥ kJ.m − 2). The model predicted fewer than 500 females from an original cohort of 1000 would survive for five days after exposure to 1 kJ/m2, and 50% offspring suppression eight days after exposure to 1 kJ.m − 2. This integrative model highlighted the importance of female longevity in maintaining a viable population at doses below 2 kJ.m − 2 and that of hatching success for radiation levels exceeding 2 kJ.m − 2. P. nana appeared to be a sensitive species at 25 °C but improvements in the model, such as incorporation of temperature variation effects and recovery mechanisms, should provide better estimates of the species’ sensitivity to UV-B.

Suggested Citation

  • Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
  • Handle: RePEc:eee:ecomod:v:441:y:2021:i:c:s0304380020304440
    DOI: 10.1016/j.ecolmodel.2020.109379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole Seehausen & Yohey Terai & Isabel S. Magalhaes & Karen L. Carleton & Hillary D. J. Mrosso & Ryutaro Miyagi & Inke van der Sluijs & Maria V. Schneider & Martine E. Maan & Hidenori Tachida & Hiroo Im, 2008. "Speciation through sensory drive in cichlid fish," Nature, Nature, vol. 455(7213), pages 620-626, October.
    2. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    3. Craig E. Williamson & Richard G. Zepp & Robyn M. Lucas & Sasha Madronich & Amy T. Austin & Carlos L. Ballaré & Mary Norval & Barbara Sulzberger & Alkiviadis F. Bais & Richard L. McKenzie & Sharon A. R, 2014. "Solar ultraviolet radiation in a changing climate," Nature Climate Change, Nature, vol. 4(6), pages 434-441, June.
    4. Dur, Gael & Souissi, Sami & Devreker, David & Ginot, Vincent & Schmitt, François G. & Hwang, Jiang-Shiou, 2009. "An individual-based model to study the reproduction of egg bearing copepods: Application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France," Ecological Modelling, Elsevier, vol. 220(8), pages 1073-1089.
    5. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    6. Gabsi, Faten & Hammers-Wirtz, Monika & Grimm, Volker & Schäffer, Andreas & Preuss, Thomas G., 2014. "Coupling different mechanistic effect models for capturing individual- and population-level effects of chemicals: Lessons from a case where standard risk assessment failed," Ecological Modelling, Elsevier, vol. 280(C), pages 18-29.
    7. Dur, Gaël & Jiménez-Melero, Raquel & Beyrend-Dur, Delphine & Hwang, Jiang-Shiou & Souissi, Sami, 2013. "Individual-based model of the phenology of egg-bearing copepods: Application to Eurytemora affinis from the Seine estuary, France," Ecological Modelling, Elsevier, vol. 269(C), pages 21-36.
    8. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2021. "Using individual-based modelling to investigate the possible role that the Red Tooth effect plays in maintaining sexual reproduction," Ecological Modelling, Elsevier, vol. 459(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    3. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    4. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    5. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    6. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    7. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    8. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    9. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    10. Takahashi, Amane & Ban, Syuhei & Papa, Rey Donne S. & Tordesillas, Dino T. & Dur, Gaël, 2023. "Cumulative reproduction model to quantify the production of the invasive species Arctodiaptomus dorsalis (Calanoida, Copepoda)," Ecological Modelling, Elsevier, vol. 482(C).
    11. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    12. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    13. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    14. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).
    15. Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).
    16. Chudzinska, Magda & Nabe-Nielsen, Jacob & Smout, Sophie & Aarts, Geert & Brasseur, Sophie & Graham, Isla & Thompson, Paul & McConnell, Bernie, 2021. "AgentSeal: Agent-based model describing movement of marine central-place foragers," Ecological Modelling, Elsevier, vol. 440(C).
    17. Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).
    18. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    19. Sakiyama, Tomoko, 2023. "Spatial inconsistency of memorized positions produces different types of movements," Ecological Modelling, Elsevier, vol. 481(C).
    20. Colon, C. & Claessen, D. & Ghil, M., 2015. "Bifurcation analysis of an agent-based model for predator–prey interactions," Ecological Modelling, Elsevier, vol. 317(C), pages 93-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:441:y:2021:i:c:s0304380020304440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.