IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v454y2021ics0304380021001733.html
   My bibliography  Save this article

Modeling opportunistic exploitation: increased extinction risk when targeting more than one species

Author

Listed:
  • Thurner, Stephanie D
  • Converse, Sarah J
  • Branch, Trevor A

Abstract

Extinction rates are increasing globally, and direct exploitation is an important driver. Many pathways have been proposed to explain how exploitation can lead to extinction. One of these proposed but understudied multispecies pathways is opportunistic exploitation, which occurs when a highly valuable but rare species is encountered and targeted during exploitation of a less valuable, but more common, target species. Using individual-based simulations of exploiters in a two-species spatial model, we contribute evidence which supports that opportunistic exploitation increases depletion when compared to single-species exploitation, and is as detrimental to the more valuable, rare species as the anthropogenic Allee effect (where price increases with rarity) and the Allee effect (where population growth declines at low abundance). The most important factors affecting the impact of opportunistic exploitation are gross revenue and abundance of the more common, less valuable species, while ease of capture and growth rate of the more common, less valuable species are less important. Thus, valuable but rare species are most at risk when harvested alongside low-value abundant species; this information is relevant for managers focused on protection of rare species in multispecies systems.

Suggested Citation

  • Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
  • Handle: RePEc:eee:ecomod:v:454:y:2021:i:c:s0304380021001733
    DOI: 10.1016/j.ecolmodel.2021.109611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021001733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    3. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    4. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    7. Schlather, Martin & Malinowski, Alexander & Menck, Peter J. & Oesting, Marco & Strokorb, Kirstin, 2015. "Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    2. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    3. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    4. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    5. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    6. Carleton Schade & David Pimentel, 2010. "Population crash: prospects for famine in the twenty-first century," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(2), pages 245-262, April.
    7. Dudley, Peter N. & Bonazza, Riccardo & Porter, Warren P., 2016. "Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer," Ecological Modelling, Elsevier, vol. 320(C), pages 231-240.
    8. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    9. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    10. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    11. Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
    12. Chuansheng Wang & Guiyan Sun & Lijuan Dang, 2015. "Identifying Ecological Red Lines: A Case Study of the Coast in Liaoning Province," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    13. Denis Réale & Mahdi Khelfaoui & Pierre-Olivier Montiglio & Yves Gingras, 2020. "Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1361-1385, March.
    14. Dragomir, Lucian & Dragomir, Robert, 2019. "Climate Change And Its Interaction With Natural, Economic And Social Processes," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 19(2), pages 125-138.
    15. Ko, Chia-Ying & Root, Terry L. & Lee, Pei-Fen, 2011. "Movement distances enhance validity of predictive models," Ecological Modelling, Elsevier, vol. 222(4), pages 947-954.
    16. DeGregorio, Brett A. & Westervelt, James D. & Weatherhead, Patrick J. & Sperry, Jinelle H., 2015. "Indirect effect of climate change: Shifts in ratsnake behavior alter intensity and timing of avian nest predation," Ecological Modelling, Elsevier, vol. 312(C), pages 239-246.
    17. Reed Noss, 2011. "Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise," Climatic Change, Springer, vol. 107(1), pages 1-16, July.
    18. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    19. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    20. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:454:y:2021:i:c:s0304380021001733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.