IDEAS home Printed from
   My bibliography  Save this article

Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer


  • Dudley, Peter N.
  • Bonazza, Riccardo
  • Porter, Warren P.


Shifting suitable range limits under global warming will threaten many species. Modeling and mapping these potential range shifts is important for conservation. As global warming will introduce new sets of abiotic conditions, predictive empirical niche models may not perform well and the best method to model a specie's projected range shifts may be to model their fundamental niche with a biophysical mechanistic niche model. However, this class of model requires many physiological parameters that are difficult to measure for species not easily kept in captivity. It is also difficult to estimate these parameters for marine species given the interactions among their in-water motion, metabolism, and heat transfer. To surmount these difficulties, we use our previously verified novel technique combining 3D digital design, computational fluid dynamics, and finite volume heat transfer modeling to find animal core temperatures. We then use this method to build a fundamental niche map for internesting and nesting leatherback sea turtles (Dermochelys coriacea). With these niche maps we analyze three main nesting areas. We show that global warming poses a large overheating risk to leatherbacks in Southeast Asia, a slight risk to leatherbacks in the West Atlantic and a low risk to leatherbacks in the East Atlantic. We also show that the impact may be less on leatherbacks that shift their nesting location or who are smaller. Methods such these are important to produce efficiently and economically accurate maps of regions that will become inhospitable to species under global warming conditions.

Suggested Citation

  • Dudley, Peter N. & Bonazza, Riccardo & Porter, Warren P., 2016. "Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer," Ecological Modelling, Elsevier, vol. 320(C), pages 231-240.
  • Handle: RePEc:eee:ecomod:v:320:y:2016:i:c:p:231-240
    DOI: 10.1016/j.ecolmodel.2015.10.012

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. M. Fuentes & M. Fish & J. Maynard, 2012. "Management strategies to mitigate the impacts of climate change on sea turtle’s terrestrial reproductive phase," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 51-63, January.
    2. Steven J. Smith and T.M.L. Wigley, 2006. "Multi-Gas Forcing Stabilization with Minicam," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 373-392.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Sampedro & Iñaki Arto & Mikel González-Eguino, 2017. "Implications of Switching Fossil Fuel Subsidies to Solar: A Case Study for the European Union," Sustainability, MDPI, Open Access Journal, vol. 10(1), pages 1-12, December.
    2. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 91-124.
    3. Duro Moreno, Juan Antonio & Giménez Gómez, José M. (José Manuel) & Vilella, Cori, 2018. "The allocation of CO2 emissions as a claims problem," Working Papers 2072/351585, Universitat Rovira i Virgili, Department of Economics.
    4. Fuentes, M.M.P.B. & Porter, W.P., 2013. "Using a microclimate model to evaluate impacts of climate change on sea turtles," Ecological Modelling, Elsevier, vol. 251(C), pages 150-157.
    5. Asbjørn Torvanger & Marianne Lund & Nathan Rive, 2013. "Carbon capture and storage deployment rates: needs and feasibility," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 187-205, February.
    6. Mariana Fuentes & Lynda Chambers & Andrew Chin & Peter Dann & Kirstin Dobbs & Helene Marsh & Elvira Poloczanska & Kim Maison & Malcolm Turner & Robert Pressey, 2016. "Adaptive management of marine mega-fauna in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 209-224, February.
    7. Sohl, Terry L. & Wimberly, Michael C. & Radeloff, Volker C. & Theobald, David M. & Sleeter, Benjamin M., 2016. "Divergent projections of future land use in the United States arising from different models and scenarios," Ecological Modelling, Elsevier, vol. 337(C), pages 281-297.
    8. Zhang, Hailing & Liu, Changxin & Wang, Can, 2021. "Extreme climate events and economic impacts in China: A CGE analysis with a new damage function in IAM," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    9. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    10. Chen, Yong & Marek, Gary W. & Marek, Thomas H. & Moorhead, Jerry E. & Heflin, Kevin R. & Brauer, David K. & Gowda, Prasanna H. & Srinivasan, Raghavan, 2019. "Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model," Agricultural Water Management, Elsevier, vol. 221(C), pages 13-24.
    11. Shili Yang & Changxin Liu & Wenjie Dong & Jieming Chou & Di Tian & Ting Wei & Yuan Tian, 2018. "Quantifying the Climate Impact of the US Policy Choices Using an Economic and Earth System Model," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-11, June.
    12. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    13. Steven Smith & J. West & Page Kyle, 2011. "Economically consistent long-term scenarios for air pollutant emissions," Climatic Change, Springer, vol. 108(3), pages 619-627, October.
    14. Stephen Newbold & Adam Daigneault, 2009. "Climate Response Uncertainty and the Benefits of Greenhouse Gas Emissions Reductions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(3), pages 351-377, November.
    15. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    16. Nölte, Anja & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model," Ecological Modelling, Elsevier, vol. 438(C).
    17. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    18. Antolin, Luís A.S. & Heinemann, Alexandre B. & Marin, Fábio R., 2021. "Impact assessment of common bean availability in Brazil under climate change scenarios," Agricultural Systems, Elsevier, vol. 191(C).
    19. Vasiliki Almpanidou & Eleni Katragkou & Antonios D. Mazaris, 2018. "The efficiency of phenological shifts as an adaptive response against climate change: a case study of loggerhead sea turtles (Caretta caretta) in the Mediterranean," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1143-1158, October.
    20. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:320:y:2016:i:c:p:231-240. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.