IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i4p947-954.html
   My bibliography  Save this article

Movement distances enhance validity of predictive models

Author

Listed:
  • Ko, Chia-Ying
  • Root, Terry L.
  • Lee, Pei-Fen

Abstract

Including the distance species are able to move in predictive models improves conservation practice. Bird inventory projects carried out from 1993 to 2004 in Taiwan provide an opportunity to investigate the relationships among species distribution, movement distance, and the environment. We compared projected distributions of 17 Taiwanese endemic bird species using what we called the Standard Method (i.e. movement distance is zero) and what we called the Buffer Method (i.e. movement distance is longer than zero) in three presence-only models (GARP, MAXENT and LIVES). The Standard Method used species original occurrence records directly while the Buffer Method expanded the occurrence of species to areas 1km2 around each recorded location. We first tested the efficacy of the Buffer Method using ten common species of the 17, and then applied the method to two rare species of the 17. For both the common and rare species, the distributions predicted by the two methods showed slight but important differences. The Buffer Method for all species had a higher average predictive probability, while the Standard Method had a higher maximum predictive probability. Most of the values for the area under the curve (AUC) were over 0.8 with the exceptions of Taiwan Barbet (Megalaima nuchalis) and Taiwan Hwamei (Garrulax taewanus), which have recently separated from Indochinese Barbet (Megalaima annamensis) and Chinese Hwamei (Garrulax canorus), and since 2008 and 2006 have been regarded as species endemic to the study area. Kappa values showed good performance for all species using both methods. The Buffer Method, however, resulted in significantly higher sensitivity and accuracy values for all models of species (p<0.05). We conclude that when modeling species distribution including the area where the species was censused along with areas within the minimum movement areas better defines the surrounding areas that might supplement core habitat requirements. Therefore, using the Buffer Method, species surrounding distribution can be obtained which provides a better understanding of the species distributions. Given that distribution size is a key to the conservation of species, we suggest the Buffer Method can be used in conservation planning.

Suggested Citation

  • Ko, Chia-Ying & Root, Terry L. & Lee, Pei-Fen, 2011. "Movement distances enhance validity of predictive models," Ecological Modelling, Elsevier, vol. 222(4), pages 947-954.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:947-954
    DOI: 10.1016/j.ecolmodel.2010.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010006502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    3. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    4. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Balestrieri & Giuseppe Bogliani & Giovanni Boano & Aritz Ruiz-González & Nicola Saino & Stefano Costa & Pietro Milanesi, 2016. "Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    2. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    3. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    4. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    5. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    6. Dudley, Peter N. & Bonazza, Riccardo & Porter, Warren P., 2016. "Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer," Ecological Modelling, Elsevier, vol. 320(C), pages 231-240.
    7. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    8. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    9. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    10. Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
    11. Buse, Jörn & Griebeler, Eva Maria, 2011. "Incorporating classified dispersal assumptions in predictive distribution models – A case study with grasshoppers and bush-crickets," Ecological Modelling, Elsevier, vol. 222(13), pages 2130-2141.
    12. Chuansheng Wang & Guiyan Sun & Lijuan Dang, 2015. "Identifying Ecological Red Lines: A Case Study of the Coast in Liaoning Province," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    13. Denis Réale & Mahdi Khelfaoui & Pierre-Olivier Montiglio & Yves Gingras, 2020. "Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1361-1385, March.
    14. Lucian Dragomir & Robert Dragomir, 2019. "Climate Change And Its Interaction With Natural, Economic And Social Processes," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 19(2), pages 125-138.
    15. Reed Noss, 2011. "Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise," Climatic Change, Springer, vol. 107(1), pages 1-16, July.
    16. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    17. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    18. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    19. repec:plo:pone00:0184193 is not listed on IDEAS
    20. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    21. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:947-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.