IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i23p3248-3258.html
   My bibliography  Save this article

Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?

Author

Listed:
  • Václavík, Tomáš
  • Meentemeyer, Ross K.

Abstract

Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges because (i) they typically violate SDM's assumption that the organism is in equilibrium with its environment, and (ii) species absence data are often unavailable or believed to be too difficult to interpret. This often leads researchers to generate pseudo-absences for model training or utilize presence-only methods, and to confuse the distinction between predictions of potential vs. actual distribution. We examined the hypothesis that true-absence data, when accompanied by dispersal constraints, improve prediction accuracy and ecological understanding of iSDMs that aim to predict the actual distribution of biological invasions. We evaluated the impact of presence-only, true-absence and pseudo-absence data on model accuracy using an extensive dataset on the distribution of the invasive forest pathogen Phytophthora ramorum in California. Two traditional presence/absence models (generalized linear model and classification trees) and two alternative presence-only models (ecological niche factor analysis and maximum entropy) were developed based on 890 field plots of pathogen occurrence and several climatic, topographic, host vegetation and dispersal variables. The effects of all three possible types of occurrence data on model performance were evaluated with receiver operating characteristic (ROC) and omission/commission error rates. Results show that prediction of actual distribution was less accurate when we ignored true-absences and dispersal constraints. Presence-only models and models without dispersal information tended to over-predict the actual range of invasions. Models based on pseudo-absence data exhibited similar accuracies as presence-only models but produced spatially less feasible predictions. We suggest that true-absence data are a critical ingredient not only for accurate calibration but also for ecologically meaningful assessment of iSDMs that focus on predictions of actual distributions.

Suggested Citation

  • Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:23:p:3248-3258
    DOI: 10.1016/j.ecolmodel.2009.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009005742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freeman, Elizabeth A. & Moisen, Gretchen G., 2008. "A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa," Ecological Modelling, Elsevier, vol. 217(1), pages 48-58.
    2. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    3. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    4. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    5. Lippitt, Christopher D. & Rogan, John & Toledano, James & Sangermano, Florencia & Eastman, J. Ronald & Mastro, Victor & Sawyer, Alan, 2008. "Incorporating anthropogenic variables into a species distribution model to map gypsy moth risk," Ecological Modelling, Elsevier, vol. 210(3), pages 339-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robinson, Todd P. & van Klinken, Rieks D. & Metternicht, Graciela, 2010. "Comparison of alternative strategies for invasive species distribution modeling," Ecological Modelling, Elsevier, vol. 221(19), pages 2261-2269.
    2. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    3. Jeong Soo Park & Donghui Choi & Youngha Kim, 2020. "Potential Distribution of Goldenrod ( Solidago altissima L.) during Climate Change in South Korea," Sustainability, MDPI, Open Access Journal, vol. 12(17), pages 1-11, August.
    4. Vuilleumier, S. & Buttler, A. & Perrin, N. & Yearsley, J.M., 2011. "Invasion and eradication of a competitively superior species in heterogeneous landscapes," Ecological Modelling, Elsevier, vol. 222(3), pages 398-406.
    5. Kelly Jane Easterday & Patrick J McIntyre & James H Thorne & Maria J Santos & Maggi Kelly, 2016. "Assessing Threats and Conservation Status of Historical Centers of Oak Richness in California," Urban Planning, Cogitatio Press, vol. 1(4), pages 65-78.
    6. Liu, Fang & McShea, William J. & Li, Diqiang, 2017. "Correlating habitat suitability with landscape connectivity: A case study of Sichuan golden monkey in China," Ecological Modelling, Elsevier, vol. 353(C), pages 37-46.
    7. Duque-Lazo, J. & van Gils, H. & Groen, T.A. & Navarro-Cerrillo, R.M., 2016. "Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia," Ecological Modelling, Elsevier, vol. 320(C), pages 62-70.
    8. Omid Ghorbanzadeh & Hashem Rostamzadeh & Thomas Blaschke & Khalil Gholaminia & Jagannath Aryal, 2018. "A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 497-517, November.
    9. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    10. Buse, Jörn & Griebeler, Eva Maria, 2011. "Incorporating classified dispersal assumptions in predictive distribution models – A case study with grasshoppers and bush-crickets," Ecological Modelling, Elsevier, vol. 222(13), pages 2130-2141.
    11. Ko, Chia-Ying & Root, Terry L. & Lee, Pei-Fen, 2011. "Movement distances enhance validity of predictive models," Ecological Modelling, Elsevier, vol. 222(4), pages 947-954.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robinson, Todd P. & van Klinken, Rieks D. & Metternicht, Graciela, 2010. "Comparison of alternative strategies for invasive species distribution modeling," Ecological Modelling, Elsevier, vol. 221(19), pages 2261-2269.
    2. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    3. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    4. Brice B Hanberry & Hong S He & Brian J Palik, 2012. "Pseudoabsence Generation Strategies for Species Distribution Models," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    5. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    6. Jacquomo Monk & Daniel Ierodiaconou & Euan Harvey & Alex Rattray & Vincent L Versace, 2012. "Are We Predicting the Actual or Apparent Distribution of Temperate Marine Fishes?," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    7. Ashcroft, Michael B. & French, Kristine O. & Chisholm, Laurie A., 2011. "An evaluation of environmental factors affecting species distributions," Ecological Modelling, Elsevier, vol. 222(3), pages 524-531.
    8. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    9. Watling, James I. & Romañach, Stephanie S. & Bucklin, David N. & Speroterra, Carolina & Brandt, Laura A. & Pearlstine, Leonard G. & Mazzotti, Frank J., 2012. "Do bioclimate variables improve performance of climate envelope models?," Ecological Modelling, Elsevier, vol. 246(C), pages 79-85.
    10. Santika, Truly & Hutchinson, Michael F., 2009. "The effect of species response form on species distribution model prediction and inference," Ecological Modelling, Elsevier, vol. 220(19), pages 2365-2379.
    11. Douglas J Shinneman & Robert E Means & Kevin M Potter & Valerie D Hipkins, 2016. "Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-24, March.
    12. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    13. Jesús Aguirre-Gutiérrez & Luísa G Carvalheiro & Chiara Polce & E Emiel van Loon & Niels Raes & Menno Reemer & Jacobus C Biesmeijer, 2013. "Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria – Dutch Hoverflies as a Case Study," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    14. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    15. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    16. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    17. Pelayo Acevedo & Alberto Jiménez-Valverde & Jorge M. Lobo & Raimundo Real, 2017. "Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change," Climatic Change, Springer, vol. 145(1), pages 131-143, November.
    18. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    19. Lintz, Heather E. & McCune, Bruce & Gray, Andrew N. & McCulloh, Katherine A., 2011. "Quantifying ecological thresholds from response surfaces," Ecological Modelling, Elsevier, vol. 222(3), pages 427-436.
    20. Huijie Qiao & Congtian Lin & Liqiang Ji & Zhigang Jiang, 2012. "mMWeb - An Online Platform for Employing Multiple Ecological Niche Modeling Algorithms," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:23:p:3248-3258. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.