China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119828
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
- Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
- Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
- Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
- Wei Zhou & Alice Moncaster & David Reiner & Peter Guthrie, 2020.
"Developing a generic System Dynamics model for building stock transformation towards energy efficiency and low-carbon development,"
Working Papers
EPRG2018, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Zhou, W. & Moncaster, A. & Reiner, D. & Guthrie, P., 2020. "Developing a generic System Dynamics model for building stock transformation towards energy efficiency and low-carbon development," Cambridge Working Papers in Economics 2057, Faculty of Economics, University of Cambridge.
- Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
- Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2009. "Research on energy-saving effect of technological progress based on Cobb-Douglas production function," Energy Policy, Elsevier, vol. 37(8), pages 2842-2846, August.
- Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
- Xu, Peng & Huang, Joe & Shen, Pengyuan & Ma, Xiaowen & Gao, Xuefei & Xu, Qiaolin & Jiang, Han & Xiang, Yong, 2013. "Commercial building energy use in six cities in Southern China," Energy Policy, Elsevier, vol. 53(C), pages 76-89.
- Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
- Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
- Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
- Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
- Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
- Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
- Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
- Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
- Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
- Yang, Tao & Pan, Yiqun & Yang, Yikun & Lin, Meishun & Qin, Bingyue & Xu, Peng & Huang, Zhizhong, 2017. "CO2 emissions in China's building sector through 2050: A scenario analysis based on a bottom-up model," Energy, Elsevier, vol. 128(C), pages 208-223.
- Yue-Jun Zhang & Xiao-Juan Bian & Weiping Tan, 2018. "The linkages of sectoral carbon dioxide emission caused by household consumption in China: evidence from the hypothetical extraction method," Empirical Economics, Springer, vol. 54(4), pages 1743-1775, June.
- Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
- Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
- Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
- Khanna, Nina Zheng & Zhou, Nan & Fridley, David & Ke, Jing, 2016. "Quantifying the potential impacts of China's power-sector policies on coal input and CO2 emissions through 2050: A bottom-up perspective," Utilities Policy, Elsevier, vol. 41(C), pages 128-138.
- Huang, Cheng & Han, Ji & Chen, Wei-Qiang, 2017. "Changing patterns and determinants of infrastructures’ material stocks in Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 47-53.
- Sang, Jingmeng & Liu, Xin & Liang, Chuanzhi & Feng, Guohui & Li, Zonghan & Wu, Xiuhui & Song, Mengmeng, 2022. "Differences between design expectations and actual operation of ground source heat pumps for green buildings in the cold region of northern China," Energy, Elsevier, vol. 252(C).
- Huang, Tao & Shi, Feng & Tanikawa, Hiroki & Fei, Jinling & Han, Ji, 2013. "Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 91-101.
- Tarun M. Khanna & Giovanni Baiocchi & Max Callaghan & Felix Creutzig & Horia Guias & Neal R. Haddaway & Lion Hirth & Aneeque Javaid & Nicolas Koch & Sonja Laukemper & Andreas Löschel & Maria del Mar Z, 2021. "A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings," Nature Energy, Nature, vol. 6(9), pages 925-932, September.
- Wang, Ailun & Lin, Boqiang, 2018. "Dynamic change in energy and CO2 performance of China's commercial sector: A regional comparative study," Energy Policy, Elsevier, vol. 119(C), pages 113-122.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuohua Zhang & Hanning Dong & Can Lu & Wei Li, 2023. "Carbon Emission Projection and Carbon Quota Allocation in the Beijing–Tianjin–Hebei Region of China under Carbon Neutrality Vision," Sustainability, MDPI, vol. 15(21), pages 1-29, October.
- He, Yu-Jia & Tai, Ying-Di & Fakrouche, Nassim & Zhang, Chun-Lu, 2023. "Applicability evaluation of internal heat exchanger in CO2 transcritical cycle considering compressor operation boundaries," Applied Energy, Elsevier, vol. 349(C).
- Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
- Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
- Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
- Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
- Feng Lan & Zhao Hui & Jing Bian & Ying Wang & Wenxin Shen, 2022. "Ecological Well-Being Performance Evaluation and Spatio-Temporal Evolution Characteristics of Urban Agglomerations in the Yellow River Basin," Land, MDPI, vol. 11(11), pages 1-21, November.
- Huo, Tengfei & Cong, Xiaobo & Cheng, Cong & Cai, Weiguang & Zuo, Jian, 2023. "What is the driving mechanism for the carbon emissions in the building sector? An integrated DEMATEL-ISM model," Energy, Elsevier, vol. 274(C).
- Licandeo, Francisca & Flores, Francisco & Feijoo, Felipe, 2023. "Assessing the impacts of economy-wide emissions policies in the water, energy, and land systems considering water scarcity scenarios," Applied Energy, Elsevier, vol. 342(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
- Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
- Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
- Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
- Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
- Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
- Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
- Xu, Guangyue & Wang, Weimin, 2020. "China’s energy consumption in construction and building sectors: An outlook to 2100," Energy, Elsevier, vol. 195(C).
- Zhu, Chen & Li, Xiaodong & Zhu, Weina & Gong, Wei, 2022. "Embodied carbon emissions and mitigation potential in China's building sector: An outlook to 2060," Energy Policy, Elsevier, vol. 170(C).
- Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
- Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019.
"Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China,"
Sustainability, MDPI, vol. 11(13), pages 1-18, July.
- Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Working Papers EPRG1923, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Zhou, W. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Cambridge Working Papers in Economics 1967, Faculty of Economics, University of Cambridge.
- Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
- Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
- Wang, Qian & Zhu, Hongtao, 2024. "Combined top-down and bottom-up approach for CO2 emissions estimation in building sector of beijing: Taking new energy vehicles into consideration," Energy, Elsevier, vol. 290(C).
- Cao, Zhi & Liu, Gang & Duan, Huabo & Xi, Fengming & Liu, Guiwen & Yang, Wei, 2019. "Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis," Applied Energy, Elsevier, vol. 238(C), pages 442-452.
- Khanna, Nina & Fridley, David & Zhou, Nan & Karali, Nihan & Zhang, Jingjing & Feng, Wei, 2019. "Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts," Applied Energy, Elsevier, vol. 242(C), pages 12-26.
- Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
- Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
- Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
More about this item
Keywords
Commercial building sector; Carbon emission peak; Carbon neutrality; Dynamic scenario simulation; System dynamics model; Integrated dynamic emission assessment model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010996. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.