IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1633-d1619606.html
   My bibliography  Save this article

Prediction of Peak Path of Building Carbon Emissions Based on the STIRPAT Model: A Case Study of Guangzhou City

Author

Listed:
  • Xiangyang Jiang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Guangzhou Installation Group Co., Ltd., Guangzhou 510440, China)

  • Shilei Lu

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

Abstract

Carbon emissions from the building sector have a substantial effect on peak carbon targets. However, there are large differences in the carbon peak paths between different regions and buildings. This study used the stochastic impacts by regression on population, affluence, and technology (STIRPAT) model to study the peak carbon emission paths of buildings in Guangzhou City. Through ridge regression and F-tests, the main driving factors affecting carbon emissions from buildings were identified. Finally, the decreasing rate of carbon emissions per unit of building area in Guangzhou was changed to predict the time of the carbon peak. The results of the ridge regression analysis and F-test show that the urbanization rate, total floor area, consumption level of residents, value-added of the tertiary industry, and carbon emissions per unit of public floor area are the main driving factors of the model. The minimum reduction rate of carbon emissions per unit floor area required to achieve a building carbon peak in Guangzhou City by 2030 is 5%. This study provides a theoretical reference for Guangzhou to realize peak building carbon emissions.

Suggested Citation

  • Xiangyang Jiang & Shilei Lu, 2025. "Prediction of Peak Path of Building Carbon Emissions Based on the STIRPAT Model: A Case Study of Guangzhou City," Energies, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1633-:d:1619606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    2. Natasa Nord & Yiyu Ding & Ola Skrautvol & Stian Fossmo Eliassen, 2021. "Energy Pathways for Future Norwegian Residential Building Areas," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    4. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    5. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    2. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    3. Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).
    4. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    5. Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    6. Yuanping Wang & Weiguang Cai & Lingchun Hou & Zhaoyin Zhou & Jing Bian, 2022. "Examining the Provincial-Level Difference and Impact Factors of Urban Household Electricity Consumption in China—Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    7. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    8. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    9. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    10. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    11. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    12. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    13. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    14. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    15. Huang, Junbing & Wang, Yajun & Lei, Hongyan & Chen, Xiang, 2024. "A technology-driven way to carbon peak and its impact mechanism," Energy, Elsevier, vol. 297(C).
    16. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    17. Li, Jiachen & Jiang, Meiru & Li, Ge, 2024. "Does the new energy vehicles subsidy policy decrease the carbon emissions of the urban transport industry? Evidence from Chinese cities in Yangtze River Delta," Energy, Elsevier, vol. 298(C).
    18. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.
    19. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    20. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1633-:d:1619606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.