IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v170y2022ics0301421522004414.html
   My bibliography  Save this article

Embodied carbon emissions and mitigation potential in China's building sector: An outlook to 2060

Author

Listed:
  • Zhu, Chen
  • Li, Xiaodong
  • Zhu, Weina
  • Gong, Wei

Abstract

In China's building sector, annual embodied carbon emissions (EC) account for a larger proportion than operational emissions, unlike in developed economies. Investigating future EC trajectories, possible abatement potential, and roadmaps can better guide the low-carbon development of the building sector to tackle climate change. This study proposes a bottom-up building EC model, based on the dynamic building stock turnover model and process-based life cycle assessment model, to simulate China's building EC by 2060 under different policy scenarios. The abatement potential of various factors is discussed through the decomposition model and supplementary scenarios. Results indicate that building EC have reached the peak plateau, and by 2060, under the baseline scenario, will be 49% lower than 2020 levels. There is huge room for emission reduction, and the cumulative mitigation ranges from 20.9 to 45.3 billion tCO2 for alternative development scenarios between 2021 and 2060. New building area and material emission factors are the greatest contributors to mitigation potential. Therefore, controlling construction scale and reducing material supply-side emissions are critical strategies for alleviating building EC. Moreover, measures to extend the reasonable service life of existing and new buildings should be implemented as soon as possible to decrease unnecessary waste and emissions.

Suggested Citation

  • Zhu, Chen & Li, Xiaodong & Zhu, Weina & Gong, Wei, 2022. "Embodied carbon emissions and mitigation potential in China's building sector: An outlook to 2060," Energy Policy, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:enepol:v:170:y:2022:i:c:s0301421522004414
    DOI: 10.1016/j.enpol.2022.113222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522004414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Guo, Siyue & Yan, Da & Hu, Shan & Zhang, Yang, 2021. "Modelling building energy consumption in China under different future scenarios," Energy, Elsevier, vol. 214(C).
    4. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
    5. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    6. Zhou, Wei & O'Neill, Eoghan & Moncaster, Alice & Reiner, David M. & Guthrie, Peter, 2020. "Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging," Applied Energy, Elsevier, vol. 275(C).
    7. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    8. Zhang, Yang & Yan, Da & Hu, Shan & Guo, Siyue, 2019. "Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach," Energy Policy, Elsevier, vol. 134(C).
    9. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    10. Zhi Cao & Lei Shen & Shuai Zhong & Litao Liu & Hanxiao Kong & Yanzhi Sun, 2018. "A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 377-391, April.
    11. Jin, Ruoyu & Li, Bo & Zhou, Tongyu & Wanatowski, Dariusz & Piroozfar, Poorang, 2017. "An empirical study of perceptions towards construction and demolition waste recycling and reuse in China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 86-98.
    12. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    13. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    14. Höglmeier, Karin & Weber-Blaschke, Gabriele & Richter, Klaus, 2013. "Potentials for cascading of recovered wood from building deconstruction—A case study for south-east Germany," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 81-91.
    15. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    16. Wang, Tao & Tian, Xin & Hashimoto, Seiji & Tanikawa, Hiroki, 2015. "Concrete transformation of buildings in China and implications for the steel cycle," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 205-215.
    17. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Huang, Tao & Shi, Feng & Tanikawa, Hiroki & Fei, Jinling & Han, Ji, 2013. "Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 91-101.
    19. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengdong Cheng & Xin Zhou & Huan Zhou, 2023. "Study on Carbon Emission Measurement in Building Materialization Stage," Sustainability, MDPI, vol. 15(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    3. Huo, Tengfei & Xu, Linbo & Liu, Bingsheng & Cai, Weiguang & Feng, Wei, 2022. "China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model," Applied Energy, Elsevier, vol. 325(C).
    4. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    5. Ruirui Zhang & Jing Guo & Dong Yang & Hiroaki Shirakawa & Feng Shi & Hiroki Tanikawa, 2022. "What matters most to the material intensity coefficient of buildings? Random forest‐based evidence from China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1809-1823, October.
    6. Guo, Siyue & Yan, Da & Hu, Shan & Zhang, Yang, 2021. "Modelling building energy consumption in China under different future scenarios," Energy, Elsevier, vol. 214(C).
    7. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    8. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    9. Ma, Meiyan & Tang, Xu & Shi, Changning & Wang, Min & Li, Xinying & Luo, Pengfei & Zhang, Baosheng, 2023. "Roadmap towards clean and low-carbon heating to 2060: The case of northern urban region in China," Energy, Elsevier, vol. 284(C).
    10. Khanna, Nina & Fridley, David & Zhou, Nan & Karali, Nihan & Zhang, Jingjing & Feng, Wei, 2019. "Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts," Applied Energy, Elsevier, vol. 242(C), pages 12-26.
    11. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    12. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Qiance Liu & Litao Liu & Xiaojie Liu & Shenggong Li & Gang Liu, 2021. "Building stock dynamics and the impact of construction bubble and bust on employment in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1631-1643, December.
    14. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    15. Haichao Feng & Ruonan Wang & He Zhang, 2022. "Research on Carbon Emission Characteristics of Rural Buildings Based on LMDI-LEAP Model," Energies, MDPI, vol. 15(24), pages 1-16, December.
    16. Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
    17. Zhou, Wei & O'Neill, Eoghan & Moncaster, Alice & Reiner, David M. & Guthrie, Peter, 2020. "Forecasting urban residential stock turnover dynamics using system dynamics and Bayesian model averaging," Applied Energy, Elsevier, vol. 275(C).
    18. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    19. García-Torres, Samy & Kahhat, Ramzy & Santa-Cruz, Sandra, 2017. "Methodology to characterize and quantify debris generation in residential buildings after seismic events," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 151-159.
    20. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:170:y:2022:i:c:s0301421522004414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.