IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5717-d1106898.html
   My bibliography  Save this article

Study on Carbon Emission Measurement in Building Materialization Stage

Author

Listed:
  • Shengdong Cheng

    (State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China)

  • Xin Zhou

    (State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China)

  • Huan Zhou

    (State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China)

Abstract

The construction industry plays a pivotal role in energy conservation and emission reduction. Therefore, it is of great significance to conduct research on quantifying carbon emissions in this industry to accelerate the establishment of a standardized carbon emission accounting system and achieve the goals of carbon peak and carbon neutrality. In this study, the focus is on the building materialization stage, and a carbon emission accounting system is established using the carbon emission factor method. This system is applied to calculate the carbon emissions of 15 residential buildings in Shaanxi Province. Results indicate that the carbon concentration during the materialization stage ranges from 372.43 kgCO 2 /m 2 to 525.88 kgCO 2 /m 2 , and the building material production stage accounts for 94.27% of the total emissions. Additionally, by analyzing the carbon emission composition of the sample buildings, the primary factors that influence carbon emissions during the residential building materialization stage are identified, and corresponding carbon reduction strategies are proposed. The sensitivity coefficients of carbon reduction strategies vary significantly across different stages, with the building material production stage exhibiting the highest sensitivity coefficient. Thus, it is imperative to prioritize carbon reduction strategies that target the building material production stage.

Suggested Citation

  • Shengdong Cheng & Xin Zhou & Huan Zhou, 2023. "Study on Carbon Emission Measurement in Building Materialization Stage," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5717-:d:1106898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Zhang & Jian Kang & Hong Jin, 2018. "A Review of Green Building Development in China from the Perspective of Energy Saving," Energies, MDPI, vol. 11(2), pages 1-18, February.
    2. Zhu, Chen & Li, Xiaodong & Zhu, Weina & Gong, Wei, 2022. "Embodied carbon emissions and mitigation potential in China's building sector: An outlook to 2060," Energy Policy, Elsevier, vol. 170(C).
    3. Proietti, Stefania & Desideri, Umberto & Sdringola, Paolo & Zepparelli, Francesco, 2013. "Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope," Applied Energy, Elsevier, vol. 112(C), pages 843-855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yu & Yang Wang & Dezhi Li, 2023. "Calculating and Analyzing Carbon Emission Factors of Prefabricated Components," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    2. Yongsheng Yao & Peiyi Xu & Jue Li & Hengwu Hu & Qun Qi, 2024. "Advancements and Applications of Life Cycle Assessment in Slope Treatment: A Comprehensive Review," Sustainability, MDPI, vol. 16(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    2. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    3. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    4. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    6. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    7. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    8. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    9. Lavinia Denisia Cuc & Dana Rad & Daniel Manațe & Silviu Gabriel Szentesi & Anca Dicu & Mioara Florina Pantea & Vanina Adoriana Trifan & Cosmin Silviu Raul Joldeș & Graziella Corina Bâtcă-Dumitru, 2023. "Representations of the Smart Green Concept and the Intention to Implement IoT in Romanian Real Estate Development," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    10. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    11. Mei Zhang, 2018. "Intergenerational Justice and Solidarity on Sustainability in China: A Case Study in Nanjing, Yangtze River Delta," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    12. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    13. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    14. Zezhou Wu & Qiufeng He & Kaijie Yang & Jinming Zhang & Kexi Xu, 2020. "Investigating the Dynamics of China’s Green Building Policy Development from 1986 to 2019," IJERPH, MDPI, vol. 18(1), pages 1-19, December.
    15. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Carmen Martínez-García & José Ignacio Rojas-Sola, 2018. "Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    16. Zhi-Jiang Liu & Paula Pypłacz & Marina Ermakova & Pavel Konev, 2020. "Sustainable Construction as a Competitive Advantage," Sustainability, MDPI, vol. 12(15), pages 1-13, July.
    17. Gang Yao & Yuan Chen & Wenchi Xie & Nan Chen & Yue Rui & Pingjia Luo, 2022. "Research on Collaborative Design of Performance-Refined Zero Energy Building: A Case Study," Energies, MDPI, vol. 15(19), pages 1-30, September.
    18. Proietti, Stefania & Sdringola, Paolo & Castellani, Francesco & Astolfi, Davide & Vuillermoz, Elisa, 2017. "On the contribution of renewable energies for feeding a high altitude Smart Mini Grid," Applied Energy, Elsevier, vol. 185(P2), pages 1694-1701.
    19. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
    20. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5717-:d:1106898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.