IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2917-d164368.html
   My bibliography  Save this article

Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis

Author

Listed:
  • José Adolfo Lozano-Miralles

    (Department of Engineering Graphics, Design and Projects, University of Jaén, 23071 Jaen, Spain)

  • Manuel Jesús Hermoso-Orzáez

    (Department of Engineering Graphics, Design and Projects, University of Jaén, 23071 Jaen, Spain)

  • Carmen Martínez-García

    (Department of Chemical, Environmental and Material Engineering, High Polytechnic School of Linares, University of Jaen, Linares Scientific and Technological Campus, Cinturon Sur, s/n, 23700 Linares, Spain)

  • José Ignacio Rojas-Sola

    (Department of Engineering Graphics, Design and Projects, University of Jaén, 23071 Jaen, Spain)

Abstract

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.

Suggested Citation

  • José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Carmen Martínez-García & José Ignacio Rojas-Sola, 2018. "Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2917-:d:164368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling Dong & Yu Wang & Hong Xian Li & Boya Jiang & Mohamed Al-Hussein, 2018. "Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    2. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    3. Alberto Navajas & Leire Uriarte & Luis M. Gandía, 2017. "Application of Eco-Design and Life Cycle Assessment Standards for Environmental Impact Reduction of an Industrial Product," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    4. Dami Moon & Masayuki Sagisaka & Kiyotaka Tahara & Kenichiro Tsukahara, 2017. "Progress towards Sustainable Production: Environmental, Economic, and Social Assessments of the Cellulose Nanofiber Production Process," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    5. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    6. Rafael Horn & Hanaa Dahy & Johannes Gantner & Olga Speck & Philip Leistner, 2018. "Bio-Inspired Sustainability Assessment for Building Product Development—Concept and Case Study," Sustainability, MDPI, vol. 10(1), pages 1-25, January.
    7. Proietti, Stefania & Desideri, Umberto & Sdringola, Paolo & Zepparelli, Francesco, 2013. "Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope," Applied Energy, Elsevier, vol. 112(C), pages 843-855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    2. Sarah C. Andersen & Harpa Birgisdottir & Morten Birkved, 2022. "Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review," Sustainability, MDPI, vol. 14(11), pages 1-31, June.
    3. Jan Pešta & Tereza Pavlů & Kristina Fořtová & Vladimír Kočí, 2020. "Sustainable Masonry Made from Recycled Aggregates: LCA Case Study," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Suzana Knežević & Dunja Prokić, 2023. "Indicators as a Foundation of Eco-Labelling of Baked Clay Construction Products in the Republic of Serbia," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    5. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    6. Jan Pešta & Markéta Šerešová & Vladimír Kočí, 2020. "Carbon Footprint Assessment of Construction Waste Packaging Using the Package-to-Product Indicator," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    7. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    8. Manuel Jesús Hermoso-Orzáez & José Adolfo Lozano-Miralles & Rafael Lopez-Garcia & Paulo Brito, 2019. "Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case," Sustainability, MDPI, vol. 11(21), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    2. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    3. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    5. Isabel García Gutiérrez & Daniel Elduque & Carmelo Pina & Rafael Tobajas & Carlos Javierre, 2020. "Influence of the Composition on the Environmental Impact of a Casting Magnesium Alloy," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    6. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    7. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    8. Tatbita Titin Suhariyanto & Dzuraidah Abd Wahab & Mohd Nizam Ab Rahman, 2018. "Product Design Evaluation Using Life Cycle Assessment and Design for Assembly: A Case Study of a Water Leakage Alarm," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    9. Shengdong Cheng & Xin Zhou & Huan Zhou, 2023. "Study on Carbon Emission Measurement in Building Materialization Stage," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    10. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    11. Chen, Leyuan & Wang, Yao & Jiang, Yancui & Zhang, Caizhi & Liao, Quan & Li, Jun & Wu, Jihao & Gao, Xin, 2024. "Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China," Energy, Elsevier, vol. 299(C).
    12. Ana Fonseca & Edgar Ramalho & Ana Gouveia & Filipa Figueiredo & João Nunes, 2023. "Life Cycle Assessment of PLA Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    13. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    14. Andrew Chapman & Hidemichi Fujii, 2022. "The Potential Role of Flying Vehicles in Progressing the Energy Transition," Energies, MDPI, vol. 15(19), pages 1-11, October.
    15. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    16. Zhaoxia Wang & Jing Zhao, 2018. "Optimization of Passive Envelop Energy Efficient Measures for Office Buildings in Different Climate Regions of China Based on Modified Sensitivity Analysis," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    17. Peng, Tianduo & Ren, Lei & Ou, Xunmin, 2023. "Development and application of life-cycle energy consumption and carbon footprint analysis model for passenger vehicles in China," Energy, Elsevier, vol. 282(C).
    18. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    19. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    20. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2917-:d:164368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.