IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5982-d281031.html
   My bibliography  Save this article

Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case Study Applied with PROMETHEE Methodology

Author

Listed:
  • Manuel Jesús Hermoso-Orzáez

    (Department of Graphic Engineering, Design and Projects, Universidad de Jaen, 23071 Jaen, Spain)

  • José Adolfo Lozano-Miralles

    (Department of Graphic Engineering, Design and Projects, Universidad de Jaen, 23071 Jaen, Spain)

  • Rafael Lopez-Garcia

    (Department of Mechanical and Mining Engineering, Universidad de Jaén, 23071 Jaen, Spain)

  • Paulo Brito

    (Instituto Politecnico, I.P.P Portalegre, 7300-110 Portalegre, Portugal)

Abstract

The technological change to LEDs is an unstoppable reality which, little by little, is becoming increasingly important in terms of the lighting inside and outside our homes. The exterior lighting of our cities is moving decisively and clearly towards the incorporation of this technology in urban spaces. The energy efficiency, light quality, and economic benefits of LED technology are an unquestionable reality. This is causing public administration projects involving large-scale switches to LEDs to be promoted and financed; however, it is beginning to be observed that the commitment to the policies decided by this technology should take into account some environmental aspects which have not been studied to date. The environmental impact of the substitutions is caused by the need to valorize the replaced luminaires. Until now, most have been stored without the possibility of use, reuse, or recovery. The environmental impact produced in the manufacture of LED luminaires that replace the old sodium vapor (VSAP) or metal halide (MH) discharge lamps must also be considered. In addition, in the administrative clauses specifications that govern the public tenders, it is observed that the fundamental environmental aspects both of recycling the old lamps, and of the life cycle analysis (LCA) of the luminaires that are replacing them, have not been contemplated or valued with sufficient weight. In addition, there are very few public substitution contests in which environmental criteria are rewarded or valued in an important way. This work intends to summarize a methodological proposal using the techniques of multiple decision-making criteria for the selection of bidding companies for public outdoor lighting competitions. We propose the use of the PROMETHEE method multi-criteria analysis for the application of the most commonly used criteria for the luminaire LED selection process, including an environmental impact assessment with LCA techniques, and propose this as a case or model guide in the public contests of cities. A model of the bidding conditions that addresses and assesses the environmental aspects which are absolutely key to sustainable development is supported by the ecological criteria of the circular economy.

Suggested Citation

  • Manuel Jesús Hermoso-Orzáez & José Adolfo Lozano-Miralles & Rafael Lopez-Garcia & Paulo Brito, 2019. "Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case," Sustainability, MDPI, vol. 11(21), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5982-:d:281031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Brucker, Klaas & Macharis, Cathy & Verbeke, Alain, 2013. "Multi-criteria analysis and the resolution of sustainable development dilemmas: A stakeholder management approach," European Journal of Operational Research, Elsevier, vol. 224(1), pages 122-131.
    2. Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & José Ignacio Rojas-Sola, 2017. "Power Quality and Energy Efficiency in the Pre-Evaluation of an Outdoor Lighting Renewal with Light-Emitting Diode Technology: Experimental Study and Amortization Analysis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    3. Ling Dong & Yu Wang & Hong Xian Li & Boya Jiang & Mohamed Al-Hussein, 2018. "Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    4. Fiaschi, Daniele & Bandinelli, Romeo & Conti, Silvia, 2012. "A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables," Applied Energy, Elsevier, vol. 97(C), pages 101-114.
    5. de Almeida Filho, Adiel T. & Clemente, Thárcylla R.N. & Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2018. "Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 264(2), pages 453-461.
    6. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    7. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Carmen Martínez-García & José Ignacio Rojas-Sola, 2018. "Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    8. Akgün, Aliye Ahu & van Leeuwen, Eveline & Nijkamp, Peter, 2012. "A multi-actor multi-criteria scenario analysis of regional sustainable resource policy," Ecological Economics, Elsevier, vol. 78(C), pages 19-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    2. Ryszard Dachowski & Katarzyna Gałek, 2020. "Selection of the Best Method for Underpinning Foundations Using the PROMETHEE II Method," Sustainability, MDPI, vol. 12(13), pages 1-10, July.
    3. Virginia Fernández-Pérez & Antonio Peña-García, 2021. "The Contribution of Peripheral Large Scientific Infrastructures to Sustainable Development from a Global and Territorial Perspective: The Case of IFMIF-DONES," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    4. Piotr Tomczuk & Marcin Chrzanowicz & Piotr Jaskowski & Marcin Budzynski, 2021. "Evaluation of Street Lighting Efficiency Using a Mobile Measurement System," Energies, MDPI, vol. 14(13), pages 1-25, June.
    5. Juan de Dios Unión-Sánchez & Manuel Jesús Hermoso-Orzáez & Manuel Jesús Hervás-Pulido & Blas Ogáyar-Fernández, 2022. "Impact of Thermal Dissipation on the Lighting Performance and Useful Life of LED Luminaires Applied to Urban Lighting: A Case Study," IJERPH, MDPI, vol. 19(2), pages 1-23, January.
    6. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    7. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    8. Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
    9. Piotr Pracki & Krzysztof Skarżyński, 2020. "A Multi-Criteria Assessment Procedure for Outdoor Lighting at the Design Stage," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    10. Antonio Peña-García & Ferdinando Salata, 2020. "The Perspective of Total Lighting as a Key Factor to Increase the Sustainability of Strategic Activities," Sustainability, MDPI, vol. 12(7), pages 1-8, April.
    11. Annika K. Jägerbrand, 2021. "Development of an Indicator System for Local Governments to Plan and Evaluate Sustainable Outdoor Lighting," Sustainability, MDPI, vol. 13(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    2. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    3. Annika K. Jägerbrand, 2020. "Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting," Energies, MDPI, vol. 13(9), pages 1-27, May.
    4. Stefano Lodetti & Izaskun Azcarate & José Julio Gutiérrez & Luis Alberto Leturiondo & Koldo Redondo & Purificación Sáiz & Julio J. Melero & Jorge Bruna, 2019. "Flicker of Modern Lighting Technologies Due to Rapid Voltage Changes," Energies, MDPI, vol. 12(5), pages 1-16, March.
    5. Dorukalp Durmus & Julian Wang & Shawn Good & Benjamin Basom, 2021. "The Effect of Electric Bridge Lighting at Night on Mayfly Activity," Energies, MDPI, vol. 14(10), pages 1-17, May.
    6. Sarah C. Andersen & Harpa Birgisdottir & Morten Birkved, 2022. "Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review," Sustainability, MDPI, vol. 14(11), pages 1-31, June.
    7. Wang, Nannan & Yao, Shengnan & Wu, Guobin & Chen, Xiaoyan, 2017. "The role of project management in organisational sustainable growth of technology-based firms," Technology in Society, Elsevier, vol. 51(C), pages 124-132.
    8. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    9. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    11. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    12. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    13. Kunsch, Pierre L. & Ishizaka, Alessio, 2019. "A note on using centroid weights in additive multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 391-393.
    14. Matteo Fresia & Stefano Bracco, 2023. "Electric Vehicle Fleet Management for a Prosumer Building with Renewable Generation," Energies, MDPI, vol. 16(20), pages 1-16, October.
    15. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    16. Enrique Navarrete-de Galvez & Alfonso Gago-Calderon & Luz Garcia-Ceballos & Miguel Angel Contreras-Lopez & Jose Ramon Andres-Diaz, 2021. "Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    17. Meinard, Y. & Cailloux, O., 2020. "On justifying the norms underlying decision support," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1002-1010.
    18. Ricardo J. G. Mateus & João C. Bana e Costa & Pedro Verga Matos, 2017. "Supporting Multicriteria Group Decisions with MACBETH Tools: Selection of Sustainable Brownfield Redevelopment Actions," Group Decision and Negotiation, Springer, vol. 26(3), pages 495-521, May.
    19. Suzana Knežević & Dunja Prokić, 2023. "Indicators as a Foundation of Eco-Labelling of Baked Clay Construction Products in the Republic of Serbia," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    20. Francis Marleau Donais & Irène Abi-Zeid & E. Owen D. Waygood & Roxane Lavoie, 2019. "A review of cost–benefit analysis and multicriteria decision analysis from the perspective of sustainable transport in project evaluation," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 327-358, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5982-:d:281031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.