IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp411-428.html
   My bibliography  Save this article

State-of-the-art analysis of the environmental benefits of green roofs

Author

Listed:
  • Berardi, Umberto
  • GhaffarianHoseini, AmirHosein
  • GhaffarianHoseini, Ali

Abstract

Green roofs have been proposed for sustainable buildings in many countries with different climatic conditions. A state-of-the-art review of green roofs emphasizing current implementations, technologies, and benefits is presented in this paper. Technical and construction aspects of green roofs are used to classify different systems. Environmental benefits are then discussed mainly by examining measured performances. By reviewing the benefits related to the reduction of building energy consumption, mitigation of urban heat island effect, improvement of air pollution, water management, increase of sound insulation, and ecological preservation, this paper shows how green roofs may contribute to more sustainable buildings and cities. However, an efficient integration of green roofs needs to take into account both the specific climatic conditions and the characteristics of the buildings. Economic considerations related to the life-cycle cost of green roofs are presented together with policies promoting green roofs worldwide. Findings indicate the undeniable environmental benefits of green roofs and their economic feasibility. Likewise, new policies for promoting green roofs show the necessity for incentivizing programs. Future research lines are recommended and the necessity of cross-disciplinary studies is stressed.

Suggested Citation

  • Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:411-428
    DOI: 10.1016/j.apenergy.2013.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berardi, Umberto, 2013. "Stakeholders’ influence on the adoption of energy-saving technologies in Italian homes," Energy Policy, Elsevier, vol. 60(C), pages 520-530.
    2. Pérez, Gabriel & Rincón, Lídia & Vila, Anna & González, Josep M. & Cabeza, Luisa F., 2011. "Green vertical systems for buildings as passive systems for energy savings," Applied Energy, Elsevier, vol. 88(12), pages 4854-4859.
    3. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    4. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    5. GhaffarianHoseini, AmirHosein & Dahlan, Nur Dalilah & Berardi, Umberto & GhaffarianHoseini, Ali & Makaremi, Nastaran & GhaffarianHoseini, Mahdiar, 2013. "Sustainable energy performances of green buildings: A review of current theories, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 1-17.
    6. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    7. Umberto Berardi, 2012. "Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(6), pages 411-424, November.
    8. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Gao, Yuefen, 2010. "Application of improved grey relational projection method to evaluate sustainable building envelope performance," Applied Energy, Elsevier, vol. 87(2), pages 710-720, February.
    9. Spala, A. & Bagiorgas, H.S. & Assimakopoulos, M.N. & Kalavrouziotis, J. & Matthopoulos, D. & Mihalakakou, G., 2008. "On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece," Renewable Energy, Elsevier, vol. 33(1), pages 173-177.
    10. Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
    11. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    12. S W Tsang & C Y Jim, 2011. "Game-Theory Approach for Resident Coalitions to Allocate Green-Roof Benefits," Environment and Planning A, , vol. 43(2), pages 363-377, February.
    13. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    14. Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
    15. Peri, Giorgia & Traverso, Marzia & Finkbeiner, Matthias & Rizzo, Gianfranco, 2012. "The cost of green roofs disposal in a life cycle perspective: Covering the gap," Energy, Elsevier, vol. 48(1), pages 406-414.
    16. Proietti, Stefania & Desideri, Umberto & Sdringola, Paolo & Zepparelli, Francesco, 2013. "Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope," Applied Energy, Elsevier, vol. 112(C), pages 843-855.
    17. Lilliana L.H. Peng & C. Y. Jim, 2013. "Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation," Energies, MDPI, vol. 6(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Di Lonardo & Susanna Mariani & Germina Giagnacovo & Antonella Marone & Salvatore Raimondi, 2019. "Green infrastructures for the energetic and environmental sustainability of cities," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 79-98.
    2. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    3. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    4. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    5. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    6. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    7. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.
    8. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    10. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    11. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    12. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    13. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    14. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    15. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    16. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    17. Coma, Julià & Pérez, Gabriel & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2016. "Thermal assessment of extensive green roofs as passive tool for energy savings in buildings," Renewable Energy, Elsevier, vol. 85(C), pages 1106-1115.
    18. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    19. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    20. GhaffarianHoseini, AmirHosein & Dahlan, Nur Dalilah & Berardi, Umberto & GhaffarianHoseini, Ali & Makaremi, Nastaran & GhaffarianHoseini, Mahdiar, 2013. "Sustainable energy performances of green buildings: A review of current theories, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:411-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.