IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v48y2012i1p406-414.html
   My bibliography  Save this article

The cost of green roofs disposal in a life cycle perspective: Covering the gap

Author

Listed:
  • Peri, Giorgia
  • Traverso, Marzia
  • Finkbeiner, Matthias
  • Rizzo, Gianfranco

Abstract

This study is aimed at providing a contribution in overcoming the current gap, especially in Life Cycle Costing (LCC) and Benefit – Cost (BCA) analyses, due to the lack concerning the green roof disposal costs. Therefore, we have applied to an actual extensive green roof the LCC methodology suggested by D. G. Woodward (that appears like one of the most formalized and generalizable), but we have extended the analysis to the disposal phase. This will allow a complete and proper application of the LCC methodology in order of achieving an economic accounting of this component through its life cycle. In this way, it is possible to achieve the complete evaluation of the “green roof” performance by a life cycle perspective (the environmental performances, in fact, are assessed by means of the classical Life Cycle Assessment approach). Needed steps for accomplishing the cost analysis of the disposal phase of this building component have been applied and discussed. These steps help to formalize the procedure, so attributing it an approach which may be generalized. The relative contribution of production, maintenance and end of life phases to the whole cost of this extensive green roof has been illustrated as well.

Suggested Citation

  • Peri, Giorgia & Traverso, Marzia & Finkbeiner, Matthias & Rizzo, Gianfranco, 2012. "The cost of green roofs disposal in a life cycle perspective: Covering the gap," Energy, Elsevier, vol. 48(1), pages 406-414.
  • Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:406-414
    DOI: 10.1016/j.energy.2012.02.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perera, H. S. C. & Nagarur, Nagen & Tabucanon, Mario T., 1999. "Component part standardization: A way to reduce the life-cycle costs of products," International Journal of Production Economics, Elsevier, vol. 60(1), pages 109-116, April.
    2. Lutz, James & Lekov, Alex & Chan, Peter & Whitehead, Camilla Dunham & Meyers, Steve & McMahon, James, 2006. "Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers," Energy, Elsevier, vol. 31(2), pages 311-329.
    3. Nam, Kiil & Chang, Daejun & Chang, Kwangpil & Rhee, Taejin & Lee, In-Beum, 2011. "Methodology of life cycle cost with risk expenditure for offshore process at conceptual design stage," Energy, Elsevier, vol. 36(3), pages 1554-1563.
    4. Lee, W.L. & Yik, F.W.H. & Jones, P., 2003. "A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings," Energy, Elsevier, vol. 28(8), pages 877-893.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe T. Cirella & Alessio Russo & Federico Benassi & Ernest Czermański & Anatoliy G. Goncharuk & Aneta Oniszczuk-Jastrzabek, 2021. "Energy Re-Shift for an Urbanizing World," Energies, MDPI, vol. 14(17), pages 1-22, September.
    2. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    3. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Nicole Tassicker & Payam Rahnamayiezekavat & Monty Sutrisna, 2016. "An Insight into the Commercial Viability of Green Roofs in Australia," Sustainability, MDPI, vol. 8(7), pages 1-25, June.
    5. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    6. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    7. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    8. Kokogiannakis, Georgios & Darkwa, Jo, 2014. "Support for the integration of green roof constructions within Chinese building energy performance policies," Energy, Elsevier, vol. 65(C), pages 71-79.
    9. Gianfranco Rizzo & Laura Cirrincione & Maria La Gennusa & Giorgia Peri & Gianluca Scaccianoce, 2023. "Green Roofs’ End of Life: A Literature Review," Energies, MDPI, vol. 16(2), pages 1-16, January.
    10. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    11. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    12. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    13. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.
    14. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thyssen, Jesper & Israelsen, Poul & Jorgensen, Brian, 2006. "Activity-based costing as a method for assessing the economics of modularization--A case study and beyond," International Journal of Production Economics, Elsevier, vol. 103(1), pages 252-270, September.
    2. Ming-Liang Li, 2021. "Standardizing Components and Rotating Workers Using GT-Based Algorithm—A Case Study," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    3. Mutu Tantrige Osada Vishvajith Peiris & Gileemalege Lalithri Navodya Dayarathne, 2023. "Application of Life Cycle Framework for Municipal Solid Waste Management: a Circular Economy Perspective from Developing Countries," Circular Economy and Sustainability,, Springer.
    4. Qi Wang & Dunbing Tang & Shipei Li & Jun Yang & Miguel A. Salido & Adriana Giret & Haihua Zhu, 2019. "An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    5. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    6. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    7. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    8. Thyssen, Jesper & Israelsen, Poul & Jørgensen, Brian, 2005. "Activity Based Costing as a method for assessing the economics of modularization - a case study and beyond," Management Accounting Research Group Working Papers M-2005-04, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    9. Allahyarzadeh-Bidgoli, Ali & Yanagihara, Jurandir Itizo, 2023. "Energy efficiency, sustainability, and operating cost optimization of an FPSO with CCUS: An innovation in CO2 compression and injection systems," Energy, Elsevier, vol. 267(C).
    10. Marcin Relich & Arkadiusz Gola & Małgorzata Jasiulewicz-Kaczmarek, 2022. "Identifying Improvement Opportunities in Product Design for Reducing Energy Consumption," Energies, MDPI, vol. 15(24), pages 1-19, December.
    11. Kovacic, Iva & Zoller, Veronika, 2015. "Building life cycle optimization tools for early design phases," Energy, Elsevier, vol. 92(P3), pages 409-419.
    12. Eva Labro, 2004. "The Cost Effects of Component Commonality: A Literature Review Through a Management-Accounting Lens," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 358-367, June.
    13. Amstalden, Roger W. & Kost, Michael & Nathani, Carsten & Imboden, Dieter M., 2007. "Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations," Energy Policy, Elsevier, vol. 35(3), pages 1819-1829, March.
    14. Sagar Dangal & Jeremy Faludi & Ruud Balkenende, 2022. "Design Aspects in Repairability Scoring Systems: Comparing Their Objectivity and Completeness," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    15. Jans, Raf & Degraeve, Zeger & Schepens, Luc, 2008. "Analysis of an industrial component commonality problem," European Journal of Operational Research, Elsevier, vol. 186(2), pages 801-811, April.
    16. Moret, Stefano & Codina Gironès, Víctor & Bierlaire, Michel & Maréchal, François, 2017. "Characterization of input uncertainties in strategic energy planning models," Applied Energy, Elsevier, vol. 202(C), pages 597-617.
    17. Fu Haw Ho & Salwa Hanim Abdul-Rashid & Raja Ariffin Raja Ghazilla & Yoke Ling Woo, 2019. "Resources Sustainability through Material Efficiency Strategies: An Insight Study of Electrical and Electronic Companies," Resources, MDPI, vol. 8(2), pages 1-16, June.
    18. Hong Xue & Shoujian Zhang & Yikun Su & Zezhou Wu, 2018. "Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    19. Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
    20. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Guimaraes, Renato, 2016. "The component commonality problem in a real multidimensional space: An algorithmic approach," European Journal of Operational Research, Elsevier, vol. 249(1), pages 105-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:48:y:2012:i:1:p:406-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.