IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4268-d1397396.html
   My bibliography  Save this article

Prediction and Optimization Analysis of the Performance of an Office Building in an Extremely Hot and Cold Region

Author

Listed:
  • Yunbo Liu

    (College of Architectural and Civil Engineering, Xinjiang University, Urumqi 830017, China)

  • Wanjiang Wang

    (College of Architectural and Civil Engineering, Xinjiang University, Urumqi 830017, China)

  • Yumeng Huang

    (College of Architectural and Civil Engineering, Xinjiang University, Urumqi 830017, China)

Abstract

The White Paper on Peak Carbon and Carbon Neutral Action 2022 states that China is to achieve peak carbon by 2030 and carbon neutrality by 2060. Based on the “3060 dual-carbon” goal, how to improve the efficiency of energy performance is an important prerequisite for building a low-carbon, energy-saving, green, and beautiful China. The office performance building studied in this paper is located in the urban area of Turpan, where the climate is characterized by an extremely hot summer environment and a cold winter environment. At the same time, the building is oriented east–west, with the main façade facing west, and the main façade consists of a large area of single-layer glass curtain wall, which is affected by western sunlight. As a result, there are serious problems with the building’s energy consumption, which in turn leads to excessive carbon emissions and high life cycle costs for the building. To address the above problems, this paper analyzes and optimizes the following four dimensions. First, the article creates a Convolutional Neural Network (CNN) prediction model with Total Energy Use in Buildings (TEUI), Global Warming Potential (GWP), and Life Cycle Costs (LCC) as the performance objectives. After optimization, the R 2 of the three are 0.9908, 0.9869, and 0.9969, respectively, thus solving the problem of low accuracy of traditional prediction models. Next, the NSGA-II algorithm is used to optimize the three performance objectives, which are reduced by 41.94%, 40.61%, and 31.29%, respectively. Then, in the program decision stage, this paper uses two empowered Topsis methods to optimize this building performance problem. Finally, the article analyzes the variables using two sensitivity analysis methods. Through the above research, this paper provides a framework of optimization ideas for office buildings in extremely hot and cold regions while focusing on the four major aspects of machine learning, multi-objective optimization, decision analysis, and sensitivity analysis systematically and completely. For the development of office buildings in the region, whether in the early program design or in the later stages, energy-saving measures to optimize the design have laid the foundation of important guidelines.

Suggested Citation

  • Yunbo Liu & Wanjiang Wang & Yumeng Huang, 2024. "Prediction and Optimization Analysis of the Performance of an Office Building in an Extremely Hot and Cold Region," Sustainability, MDPI, vol. 16(10), pages 1-41, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4268-:d:1397396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4268/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4268-:d:1397396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.