IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp943-961.html
   My bibliography  Save this article

Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates

Author

Listed:
  • Favoino, Fabio
  • Fiorito, Francesco
  • Cannavale, Alessandro
  • Ranzi, Gianluca
  • Overend, Mauro

Abstract

The development of adaptive building envelope technologies, and particularly of switchable glazing, can make significant contributions to decarbonisation targets. It is therefore essential to quantify their effect on building energy use and indoor environmental quality when integrated into buildings. The evaluation of their performance presents new challenges when compared to conventional “static” building envelope systems, as they require design and control aspects to be evaluated together, which are also mutually interrelated across thermal and visual physical domains.

Suggested Citation

  • Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:943-961
    DOI: 10.1016/j.apenergy.2016.06.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    2. Tavares, P.F. & Gaspar, A.R. & Martins, A.G. & Frontini, F., 2014. "Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates," Energy Policy, Elsevier, vol. 67(C), pages 68-81.
    3. Favoino, Fabio & Overend, Mauro & Jin, Qian, 2015. "The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies," Applied Energy, Elsevier, vol. 156(C), pages 1-15.
    4. Tian, Cheng & Chen, Tingyao & Chung, Tse-ming, 2014. "Experimental and simulating examination of computer tools, Radlink and DOE2, for daylighting and energy simulation with venetian blinds," Applied Energy, Elsevier, vol. 124(C), pages 130-139.
    5. Goia, Francesco & Haase, Matthias & Perino, Marco, 2013. "Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective," Applied Energy, Elsevier, vol. 108(C), pages 515-527.
    6. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    7. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    8. Stephan, Louis & Bastide, Alain & Wurtz, Etienne, 2011. "Optimizing opening dimensions for naturally ventilated buildings," Applied Energy, Elsevier, vol. 88(8), pages 2791-2801, August.
    9. Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Favoino, Fabio & Jin, Qian & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework," Energy, Elsevier, vol. 127(C), pages 301-309.
    2. Zhina Rashidzadeh & Negar Heidari Matin, 2023. "A Comparative Study on Smart Windows Focusing on Climate-Based Energy Performance and Users’ Comfort Attributes," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    3. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    4. Jin, Qian & Favoino, Fabio & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 2: A parametric study for a temperate climate," Energy, Elsevier, vol. 127(C), pages 634-649.
    5. DeForest, Nicholas & Shehabi, Arman & Selkowitz, Stephen & Milliron, Delia J., 2017. "A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings," Applied Energy, Elsevier, vol. 192(C), pages 95-109.
    6. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    7. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    8. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    9. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    10. Chambers, Jonathan & Hollmuller, Pierre & Bouvard, Olivia & Schueler, Andreas & Scartezzini, Jean-Louis & Azar, Elie & Patel, Martin K., 2019. "Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model," Energy, Elsevier, vol. 185(C), pages 136-147.
    11. Germán Campos Gordillo & Germán Ramos Ruiz & Yves Stauffer & Stephan Dasen & Carlos Fernández Bandera, 2020. "EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB ® and C#," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    12. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Cannavale, Alessandro & Martellotta, Francesco & Cossari, Pierluigi & Gigli, Giuseppe & Ayr, Ubaldo, 2018. "Energy savings due to building integration of innovative solid-state electrochromic devices," Applied Energy, Elsevier, vol. 225(C), pages 975-985.
    14. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    15. Krarti, Moncef, 2022. "Design optimization of smart glazing optical properties for office spaces," Applied Energy, Elsevier, vol. 308(C).
    16. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    17. Syrrokostas, George & Leftheriotis, George & Yannopoulos, Spyros N., 2022. "Lessons learned from 25 years of development of photoelectrochromic devices: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    19. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
    20. Giovannini, Luigi & Favoino, Fabio & Pellegrino, Anna & Lo Verso, Valerio Roberto Maria & Serra, Valentina & Zinzi, Michele, 2019. "Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    2. Xue, Peng & Li, Qian & Xie, Jingchao & Zhao, Mengjing & Liu, Jiaping, 2019. "Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements," Applied Energy, Elsevier, vol. 233, pages 62-70.
    3. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    4. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    5. Košir, Mitja & Iglič, Nataša & Kunič, Roman, 2018. "Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics," Renewable Energy, Elsevier, vol. 129(PA), pages 527-539.
    6. Favoino, Fabio & Overend, Mauro & Jin, Qian, 2015. "The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies," Applied Energy, Elsevier, vol. 156(C), pages 1-15.
    7. Zhai, Yingni & Wang, Yi & Huang, Yanqiu & Meng, Xiaojing, 2019. "A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance," Renewable Energy, Elsevier, vol. 134(C), pages 1190-1199.
    8. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    9. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    10. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    11. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    12. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    13. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    14. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    15. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    16. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    17. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    18. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    19. Fiorito, Francesco & Sauchelli, Michele & Arroyo, Diego & Pesenti, Marco & Imperadori, Marco & Masera, Gabriele & Ranzi, Gianluca, 2016. "Shape morphing solar shadings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 863-884.
    20. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:943-961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.