IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3828-d1641186.html
   My bibliography  Save this article

Drivers and Multi-Scenario Projections of Life Cycle Carbon Emissions from China’s Construction Industry

Author

Listed:
  • Qiangsheng Li

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Renfu Jia

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Qianhui Du

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Buhan Wang

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Anqi Xu

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Xiaoxia Zhu

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yi Wei

    (School of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

Life cycle carbon emissions from the construction industry (CE) have a profound impact on China’s “dual carbon” goals, with significant emissions posing severe challenges to the environment. In this paper, four prediction models were trained and compared, and the optimal model, the Genetic Algorithm Optimized BP Neural Network (GA-BP), was finally selected for multi-scenario prediction of CE. Firstly, this study performs a comprehensive accounting and indicator analysis of CE over its entire life cycle. In addition, this paper further conducts a spatial differentiation analysis of CE. Subsequently, parameter analysis was conducted using an improved STIRPAT model, followed by LMDI factor decomposition based on this model. Finally, the model performance was verified using three evaluation metrics: the coefficient of determination ( R 2 ), mean absolute error (MAE), and mean absolute percentage error (MAPE). The results indicate that (1) in the carbon emission impact assessment, CE reached a peak of 42.52 t per capita annually and 8.90 t CO 2 /m 2 per unit area; (2) the year-end resident population has the greatest influence on CE, with other related variables also contributing positively; and (3) the GA-BP model outperforms other models, with R 2 increasing from 0.0435 to 0.0981, MAE reducing from 63% to 76%, and MAPE decreasing from 23% to 68%.

Suggested Citation

  • Qiangsheng Li & Renfu Jia & Qianhui Du & Buhan Wang & Anqi Xu & Xiaoxia Zhu & Yi Wei, 2025. "Drivers and Multi-Scenario Projections of Life Cycle Carbon Emissions from China’s Construction Industry," Sustainability, MDPI, vol. 17(9), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3828-:d:1641186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    2. Wentao Feng & Tailong Chen & Longsheng Li & Le Zhang & Bingyan Deng & Wei Liu & Jian Li & Dongsheng Cai, 2024. "Application of Neural Networks on Carbon Emission Prediction: A Systematic Review and Comparison," Energies, MDPI, vol. 17(7), pages 1-15, March.
    3. Jin, Cheng & Lv, Zhiwei & Li, Zengrong & Sun, Kehan, 2023. "Green finance, renewable energy and carbon neutrality in OECD countries," Renewable Energy, Elsevier, vol. 211(C), pages 279-284.
    4. Feng, Qun & Shi, Xuejun & Zhang, Jianghua, 2019. "Influence of rent-seeking on safety supervision in Chinese construction: Based on a simulation technology," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 1-9.
    5. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    6. Shengdong Cheng & Xin Zhou & Huan Zhou, 2023. "Study on Carbon Emission Measurement in Building Materialization Stage," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    7. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    8. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeguan Yu, 2023. "The Impact of Financial System on Carbon Intensity: From the Perspective of Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    2. Zhang, Qiufeng & Huang, Huan & Chen, Liang & Wang, Yushi, 2025. "How does green finance affect carbon emission intensity? The role of green technology innovation and internet development," International Review of Economics & Finance, Elsevier, vol. 99(C).
    3. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    4. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    5. Junlong Peng & Zhuo Su & Xiao Liu & Chongsen Ma, 2025. "Promoting Low-Carbonization in the Construction Supply Chain: Key Influencing Factors and Sustainable Practices," Sustainability, MDPI, vol. 17(8), pages 1-36, April.
    6. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    7. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
    8. Juan Luo & Chong Xu & Boyu Yang & Xiaoyu Chen & Yinyin Wu, 2022. "Quantitative Analysis of China’s Carbon Emissions Trading Policies: Perspectives of Policy Content Validity and Carbon Emissions Reduction Effect," Energies, MDPI, vol. 15(14), pages 1-20, July.
    9. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    10. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    11. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    12. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    13. Adnan Khurshid & Abdur Rauf & Sadia Qayyum & Adrian Cantemir Calin & WenQi Duan, 2023. "Green innovation and carbon emissions: the role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—evidence from Central-Eastern Europe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8777-8798, August.
    14. Qiangyi Li & Jiexiao Ge & Mingyu Huang & Xiaoyu Wu & Houbao Fan, 2024. "Uncovering the Triple Synergy of New-Type Urbanization, Greening and Digitalization in China," Land, MDPI, vol. 13(7), pages 1-24, July.
    15. Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
    16. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    17. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    18. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    19. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    20. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3828-:d:1641186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.